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1.0 Introduction

The COLD-SAT dynamic model is a six-degree-of-freedom, rigid-body computer simulation of a

spacecraft in orbit around the Earth. The model was developed as part of a conceptual design review

at,the NASA Lewis Research Center to study the feasibility of a proposed spacecraft known as

COLD-SAT. COLD-SAT is an acronym for cryogenic on-orbit liquid depotmstorage, acquisition,

and transfer. The purpose of the COLD-SAT spacecraft is the investigation of the fluid dynamics and

thermodynamics of subcritical cryogenic fluids in a microgravity environment. In order to carry out

these investigations, a series of experiments will be performed onboard the spacecraft during its

proposed 6G-day operational life.

As envisioned during the study, the COLD-SAT spacecraft will be placed in a circular low Earth
orbit at an initial altitude of 550 nautical miles and an inclination of 18° . The spacecraft will

incorporate three hydrogen tanks: one large tank (the supply tank), which will be filled with liquid

hydrogen at lift-off, and two smaller tanks (the large receiver tank and the small receiver tank), which
will be filled with and drained of liquid hydrogen during the course of various onboard experiments.

In order to provide a controlled microgravity environment during the execution of some of the

experiments, axial thrusters that provide three levels of microgravity acceleration will be mouted on

the spacecraft. The cumulative time of this thrust over the 60-day mission will be approximately

60 hours; for the remaining time the spacecraft will be in a zero-gravity condition. During the course

of some onboard experiments unwanted disturbances (resulting primarily from attitude control system

activity) must be minimized. Otherwise these disturbances could he transferred to the cryogenic fluids

and degrade the quality of the resulting experimental data. This effect is of greatest concern during

experiments involving the application of axial thrust. The design life of the spacecraft was specified
as six months.

At the outset of the design study the baseline attitude control system was an all-thruster system

consisting of six pairs of hydrazine thrusters. A single-axis reaction wheel was explored for meeting

the requirements for low microgravity disturbances. A two-axis gimbal of one axial thruster was also

provided to augment the fixed thrusters. As the study progressed, the paired control thrusters on two
of the spacecraft axes were replaced with single thrusters to reduce system cost and complexity.

The design of the COLD-SAT dynamic model (fig. 1.1) was shaped largely by the requirements of

the COLD-SAT design study. The model was a major tool that was used throughout the study,

primarily to evaluate and compare the performance of several attitude control system design options.

Other areas of investigation for which the model was extensively employed were the following:



(1)The analysis of the microgmvity environment within the liquid hydrogen tanks, which was

largely produced by the activity of the attitude control system

(2) The evaluation of the effects of prolonged periods of constant, low-level thrust on the

spacecraft orbit over the 60-day mission life

(3) An assessment of the effects of liquid hydrogen sloshing in each of the three tanks on the
spacecraft dynamic behavior

Although throughout its development the design of the COLI_SAT dynamic model was guided by the
requirements of the design study, an attempt was made to keep the model as general as possible so

that its usefulness would extend to future projects as well as to COLD-SAT. To achieve this goal,
approximations and simplifications were avoided to the maximum extent feasible.

The resultant model consists of three parts: a translation model, a rotation model, and a slosh

model (figs. 1.2 to 1.4). Each of the three parts is described in detail in subsequent sections of this

report. The translation model simulates the motion of the spacecraft center of gravity about the Earth

under the influence of gravitational force, atmospheric drag, and the thrust produced by the axial
thrusters and by uncoupled control thrusters. The rotation model simulates the attitudinal motion of

the spacecraft about its center of gravity under the influence of various disturbance torques and control

torques acting on the spacecraft. The slosh model computes the torque on the spacecraft produced by

the motion of the liquid hydrogen in any or all of the three tanks. In addition to the primary function
of each part of the model, other computations are included as required. Thus, the translation model

also computes the desired spacecraft attitude for a large number of attitude options, and it computes
the torque resulting from axial thrust misalignment acting on the spacecraft. The rotation model

simulates the attitude control system and computes the microgravity environment within the spacecraft
body.

Some of the features included in the model are

(1) The capability to simulate a large number of possible spacecraft attitudes

(2) An Earth gravity model that includes the fundamental component and zonal harmonics up to the
fourth and accurately represents nodal regression and apsidal progression

(3) Accurate simulation of gravity-gradient torque and atmospheric density

(4) A tilted-dipole model of the Earth's magnetic field, which provides sufficient accuracy over
the range of orbital altitudes used for COLD-SAT

(5) A Sun model that gives the position of the Sun as a function of time and date and determines

if the Sun is blocked by the Earth

(6) A two-axis slosh model that can simulate slosh in one tank or in more than one tank

simultaneously

(7) An axial thrust model that includes thrust decay due to the unregulated Colowdown) system

(8) Simulation of control thruster (reaction control system, or RCS) startup and shutdown
transients, as well as minimum on-time constraints



(9) A reaction wheel model that includes viscous and static friction

(10) A microgravity acceleration computation that includes gravity-gradient-induced acceleration,

as well as accelerations caused by spacecraft lateral and rotational motion and angular
acceleration

(11) Quatemions that are used throughout the model to represent spacecraft attitude, which result in

a representation that is valid for all rotations, is devoid of singularities and small-angle

approximations, and requires a minimum number of numerical integrations per time step

Other computations that are included in the model but arc modeled in a simplified or approximated

form or are only modeled for certain attitude options are

(1) Solar pressure torque, which is approximated so that it is only valid for the attitude selected

for the COLD-SAT spacecraft with small attitude errors

(2) Aerodynamic drag torque, the accuracy of which is limited by the modeling of the

spacecraft surfaces as simple geometric shapes

(3) Magnetic torque, the accuracy of which is limited by the modeling of the Earth's magnetic

field as a simple dipole

However, these torques are very small relative to the dominant disturbance torques so that accurate

simulation was not required. Furthermore, highly accurate computation of these torques would result

in a model that required excessive computer run time.

Another limitation of the model is the computation of slosh torque, which cannot be simulated for

certain attitude options because the slosh model in its present form will allow no more than a 180°

spacecraft rotation with respect to inertial space. Thus, the slosh model will only function properly

with attitude options that are nearly inertially fixed.

Often during the design phase of the COLD-SAT study, alternative systems were evaluated to

determine which system best met COLD-SAT's requirements in the most cost-effective manner.

Consequently, the COLD-SAT dynamic model was constructed to have the capability to simulate all

possible alternative systems. Examples of this include the following items:

(1) Both regulated and blowdown thrust systems were considered for COLD-SAT, and both can be

simulated by using the COLD-SAT dynamic model.

(2) A single-axis reaction wheel was considered during the design phase to improve the

microgravity environment during periods of no axial thrust. Although the reaction wheel was

eliminated from the final design, it is included in the model.

(3) Both coupled and uncoupled RCS thruster systems were considered for COLD-SAT. An

uncoupled scheme was chosen for COLD--SAT to satisfy cost and complexity considerations, but the
model can simulate either system.

The model is implemented by using the EASY5 modeling and analysis package and will run on a

variety of computing platforms, including the Cray X/MP supercomputer. Execution time is a strong

function of the thrust level simulated. Simulation of the full-up model for one complete orbit on the



Clay, using the most efficient numerical integration method available, varies from about 1 min for no

thrust to about 12 to 15 min for the highest thrust level. Execution time for the translation model

alone, simulating the entire 60-day mission, is on the order of 2 to 3 hours of Cray time.

The remainder of this report provides detailed descriptions of all aspects of the model. Included are

the mathematical formulations and definitions of variables. The constants, quaternion algebra, and

coordinate systems used are discussed in the appropriate appendixes. The code listings are available

through the Computer Software Management and Information Center, Athens, Georgia, 30602.

Translation model l

Computes
• Trajectory
• Desired attitude
• Torque due to axial thrusting

I Slosh model
Computes torquesin pitch and yaw
due to sloshingfluid

Simll

Figure 1.1 .--Overview of COLD-SAT model.
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2.0 Translation Model

The translation model propagates the position and velocity vectors from an assumed initial on-orbit

state for a spacecraft under the influence of various forces. The initial state is computed in the model

as a function of the following user-specified orbital elements:

(1) Perigee altitude

(2) Eccentricity

(3) Inclination

(4) Argument of perigee

(5) Right ascension of the ascending node

(6) Time since perigee passage

Other inputs to the translation model are the initial date and time (in GMT) used to compute the

position of the Sun and the desired attitude option and orientation. A block diagram of the translation
model is shown in figure 1.2.

Three rectangular, right-handed coordinate systems are used for the translation model. They are
discussed briefly here and in more detail in appendix C:

(1) True-of-date (TOD) coordinate system (fig. 2.1): A pseudo-inertial, equatorial, Earth-centered

system whose X axis points in the direction of the first point of Aries (the vernal equinox) and whose

Z axis points in the direction of the North Pole. The axes of this system are designated X, Y, and Z.
See figure C. 1.

(2) Spacecraft-body system: A coordinate system fixed with the center-of-gravity point (CG) of the

spacecraft, where the origin is the actual CG location of the spacecraft. The x axis is defined as

parallel to the long axis of the spacecraft, pointing toward the fore end, the y axis is parallel to the

solar panel connecting struts, and the z axis points in the direction opposite the spacecraft high-gain

antenna. The axes of this system are designated x, y, and z. See figure C.2.

(3) Alternative spacecraft-body system: A coordinate system similar to (2) with the origin located

where the plane containing the rear thrusters intersects the line that is parallel to the long axis of the

spacecraft and passes through the nominal CG point (thus, if the y and z CG offsets from the nominal

are zero, then y = y' and z = z'). The axes of this system are specified as x', y', and z'. See
figure C.2.

All forces acting on the spacecraft, excluding gravity, are computed in spacecraft-body coordinates and

then transformed into TOD coordinates. The gravitational force is computed directly in TOD

coordinates, and the integration of the resulting accelerations from all applied forces is carried out in
the TOD coordinate system.

Because the model was required to accurately simulate the spacecraft orbit for periods of time

extending up to 60 days, changes in the spacecraft mass were also modeled. The mass changes of the

COLD-SAT spacecraft are significantly larger than those associated with a typical spacecraft because a



highpercentageof the spacecraft mass is composed of expendable fluids, which include liquid

hydrogen in addition to hydrazine (N2H4).

The translation model includes a number of other auxiliary functions that are not directly associated

with the computation of the spacecraft position and the velocity vectors. These include the

computation of the desired attitude matrix and subsequent extraction of an equivalent quatemion and

the computation of the Sun vector and a vector normal to the ecliptic plane. These two vectors are

required for the computation of a desired attitude quatemion for certain attitude options. Also

included in the translation model are computations of the Greenwich hour angle (GHA) and the
conversion of the calendar date and the Greenwich mean time (GMT) to the Julian date.

The remainder of this section provides detailed descriptions of the various
elements of the translation model as follows:

(1) Conversion of initial orbital elements into an initial state vector in TOD coordinates

(2) Computation of the Julian date, the Sun vector, the ecliptic-normal vector, and the GHA

(3) Computation of all simulated forces acting on the spacecraft and transformation of these

forces to TOD coordinates by using the attitude quaternion

(4) Approximation of the spacecraft mass

(5) Integration of the resulting accelerations to obtain velocity and position vectors

(6) Computation of the desired spacecraft attitude quatemion

(7) Computation of torque due to axial thruster misalignment

(8) Computation of classical or osculating orbital elements from the state vector for printing and
plotting

2.1 Interfaces of Translation Model

Interfaces between the translation model and other parts of the overall COLD-SAT dynamic model,

as well as input and output quantities, are as follows:

(1) The following quantities are computed by the translation model and passed to the rotation
model:

(a) The position vector is used for disturbance-torque computations.

(b) The atmospheric drag forces are used for (aerodynamic drag) disturbance-torque
computations.

(c) The Sun position is used for (solar pressure) disturbance-torque computations.

(d) The desired attitude quatemion is used to compute attitude error.
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(e)The GHA is used for (magnetic) disturbance-torque computations.

(f) The desired attitude quatemion at the beginning of the simulation is used to inRialize the

actual spacecraft attitude quatemion.

(2) The desired attitude quaternion at the beginning of the simulation is passed to the slosh model

to provide a rotation reference. There are no other interfaces between the translation model and the
slosh model.

(3) The following quantities are computed by the rotation model and passed to the translation
model:

(a) The actual spacecraft attitude quaternion, which is used to transform forces acting on the

spacecraft from body coordinates to TOD coordinates. (If the translation model is used alone, the

desired attitude quaternion is used in place of the actual attitude quatemion).

(b) The translational RCS accelerations resulting from unpaired thrusters. (A constant, average

value is used to represent the translational RCS force resulting from uncoupled thrusters if the

translation model is used alone.)

(4) The following quantities, which are specified by the user at the start of simulation, are input to
the translation model:

(a) Initial orbital elements (see beginning of section 2.0)

(b) Initial calendar date and GMT

(c) Spacecraf_ attitude option and axis alignment (see section 2.6)

(5) The primary outputs of the translation model are numerous classical or osculating orbital

elements, which can be plotted or presented in tabular form as a function of time.

2.2 Computation of Initial Position and Velocity Vectors From Given
Orbital Elements

An initial state vector, which consists of the initial position vector R0 and the initial velocity vector

v0, must be specified at the beginning of the simulation. It is computed from the specified orbital

elements. This section is concerned with this computation. The following standard orbital elements

are used as initial conditions. From these values the initial position and velocity vectors can be
computed. Some of these orbital elements are illustrated in figure 2.2.

a semimajor axis, ft

• eccentricity

i orbit inclination from equatorial plane, deg

[l right ascension of ascending node, deg

10



co argument of perigee, deg

Tp time since perigee passage, sec

From these given elements, additional orbital elements are computed as follows:

(in radians) is given by

TPI B

The mean anomaly

where p is the Earth gravitational constant (see appendix A). The eccentric anomaly E may be

computed by the following iterative pseudocode:

Loop:

E=M + esinM

Me = E - e sin E

If (abs(M - Me) < TOL) STOP, answer is E.

E = E + (M - Me)/(l- e cos E)

Go to loop

where TOL is a small number (TOL << 1) that indicates the accuracy of the result.

An Earth-centered, right-handed coordinate system is defined with x and y axes lying in the

spacecraft orbit plane. The x axis is in the direction of orbit perigee, and the z axis is in the direction

of the spacecraft angular momentum vector. This coordinate system is called the spacecraft orbit

(SCO) system. Refer to appendix C for a detailed description of all coordinate systems used in the

model. The position and velocity vectors in spacecraft orbital coordinates, _SCO and V3cO,

respectively, are computed as follows:

Rsc o =

a(cos E - e)

a sin E_I - e 2

m _ ....

Vsc° = IBa(l - e2)cos E

R

0

Position and velocity vectors are then transformed to TOD coordinates as follows:

go = [sco -. TODIRsco
..-}

v o = [SCO _ TOD]_sc 0

11



where

and

[SCO ---. TOD] =

cos

-sin G

0

sin fl

cos i1

0
!}10

0

cos i sin -sin w cos to

-sini cos 0 0

t'l right ascension of ascending node, dog

i inclination, dog

to argument of perigee, dog

There are two special cases of spacecraft orbit where one or more of the input orbital elements are
not defined:

Case _; e = 0, i * 0: If the spacecraft orbit is circular, orbit perigee is undefined, and the

orientation of the SCO x axis is arbitrary. For a circular orbit the argument of perigee input to

should be set to zero, so that the SCO x axis is coincident with the ascending node. Thus, the Tp
input is interpreted, in this case, as the time since the spacecraft passed the ascending node.

Case 2.; e = 0, i = 0: If the orbit is circular and lies in the equatorial plane, both the argument of

perigee and the right ascension of the ascending node are undefined. In this case, both of the input

quantities (tog'a) should be set to zero, so that the SCO coordinate system becomes identical to the

TOD system and the Tp input is interpreted, in this case, as the time since the spacecraft passed the
TOD X axis.

2.3 Computation of Forces Acting on Spacecraft

2.3.1 Gravity

The Earth gravity model computes the linear acceleration of the spacecraft due to the gravitational
field of the Earth. The fundamental component (spherical-Earth component) and as many as three

additional terms resulting from the oblateness of the Earth (zonal harmonics) can be computed, so that

nodal regression and apsidal progression can be accurately simulated.

The gravitational potential function of the Earth (from ref. 1) is as follows:

• (R,0)- treater [I+R J2R_mh2R2 (1-3 sin20)+--J3R_h2R3 (3-5 sin20) sin 0 - J4RF_h8R4

where

(3 - 30 sin20 + 35 sin40

R magnitude of spacecraft position vector, ft

0 geocentric latitude of spacecraft

/aEarth Earth gravitational constant, 1.4076469 x 1016 ft3/Sec 2

12



REarth

J2

J3

Earth equatorial radius, 20 925 656 ft

second zonal-harmonic coefficient, 1.0827 x 10 -3

third zonal-harmonic coefficient, -2.56 x 10-6

fourth zonal-harmonic coefficient, -1.58 x 10-6

The terms "/2, "/3, and "/4 in the preceding equation are called zonal harmonics and result from the
oblateness (flattening of the poles) of the Earth, which is the cause of the nodal regression of the orbit

plane and the apsidal progression of the argument of perigee. Tesseral harmonics (resulting from

longitudinal variations in the density of the Earth), zonal harmonics beyond the fourth, and solar and
lunar gravitational effects were considered negligible for these purposes and are not modeled.

The gravitational acceleration can be found by taking the gradient of the potential function as
follows:

-_ 1 0_(R,0)
-. --- -. 0(P(R,0) + v0

VO(R,O) = vRg R + vog o = v R OR R O0

where v R and v 0 are unit vectors in the R and 0 directions in spherical coordinates, respectively.

Refer to figure 2.1 for an illustration of this coordinate system.

By evaluating the appropriate partial derivatives, the radial and latitudinal components of the

gravitational acceleration (in spherical coordinates) can be determined as follows:

iaEarth 3 2 3
= - _ _ - _ 2BEar_J3REa_R -gR R 2 2 _IF'a_J2REaahR -4(1 3 sin20) -5(3 5 sin20) sin 0

+ 5 4
_tEmhJ4REatthR-6(3 - 30 sin20 + 35 sin40)

2 -4. 1
gO = -3JaEarthJ2R_th R sm 0 cos 0 + -- JaEarthJ3R_trthR-S(3 cos 0 - 15 sin20 cos 0)

2

_ 1 4 -6
._ _EarthJ4RF_avthR (-60 sin 0 cos 0 + 140 sin30 cos 0)

As there is no longitudinal variation in the potential function, the longitudinal component of

gravitational acceleration is zero.

g,=O

The gravitational acceleration of the spacecraft in spherical coordinates is then converted to
Cartesian TOD coordinates as follows:

xl Icos 11 cos 0g*= gy =[sin t] cos 0
/

z L sin 0

-sin rl sin /_

cos 0 ][go]

where q is the right ascension of the spacecraft position vector.

13



Right ascension and latitude are computed from the spacecraft position vector _ as follows:

r"

0 = tan -1 I- Rz

L

(Note that all aretangunt functions used in this document are of the four-quadrant form, which

considers the numerator and denominator of the argument separately so that the range of the function
is the interval [-Tr,+n] with no singularities.)

2.3.2 Aerodynamic Drag

An aerodynamic drag force results when the moving spacecraft interacts with the ratified

atmosphere, producing a force that opposes motion. Because this force is, in general, not symmetrical
with respect to the spacecraft CG, a disturbance torque results as well. (This is discussed in

section 3.2.1.3.) The general equation for computing aerodynamic drag is

1 c Av
F=.__

where

F aerodynamic drag force

PA atmospheric density

cD drag coefficient (assumed =2.6)

v spacecraft velocity

A projected area of spacecraft normal to spacecraft velocity vector

The atmospheric drag force is computed for each axis by applying the preceding equation while using
the velocity (in spacecraft body coordinates) along each axis and by considering the projected area of

the spacecraft normal to each spacecraft axis. It should be emphasized that this method is an

approximate one but is sufficiently accurate for the purposes of this model, l_ecause the drag torque

must also be computed, the centroid of this projectecl area must be specified as well. Therefore, using
vector notation,

I(Fdr_)_

-- 1
2 CDPA

" 2

sgn(VS/c )x(Vs/c)x(Ax) 1

sgn(vs/c)y(v2c)y(Ay)[

sgn(vs/c)z (v2¢ )z(A z) .j

14



where

cD

PA

VS/C

drag force vector (in spacecraft coordinates), lbf

drag coefficient (dimensionless, equal to 2.6)

atmospheric density in spacecraft vicinity (from Jacchia's 1970 model), slug/ft 3

spacecraft velocity vector, ft/sec, transformed into spacecraft coordinates (using attitude

quateruion)

projected area of spacecraft normal to spacecraft x, y, and z axes, respectively, ft2

The atmospheric density OA is computed by means of a subroutine that utilizes/acchia's 1970 model.

A complete description of this atmospheric density model can be found in reference 2.

2.3.3 Axial Thrust

2.3.3.1 Thrust vector.--The linear force acting on spacecraft due to axial thrust is desired to be in

the spacecraft positive x direction; however, because of the thruster-gimbal system and unintentional

thruster misalignments, there are typically small y and z components of axial thrust as well. The

magnitude of the thrust for blowdown systems varies with time and is as given in section 2.3.3.3. The

thrust magnitude for regulated systems is assumed to be constant at some specified value. The thrust
vector (in spacecraft coordinates) is expressed as

where

F%=/ sin Yz / " + | FTF sin 'z
L-Fw sin yy cos ¥zJsimballcdL sin ,y fixed

dm_stex thmstcx

_T resultant thrust vector in spacecraft coordinates, lbf

FTG magnitude of thrust produced by gimbaUed thruster, lbf

FTF total of thrust magnitude produced by fixed thrusters, lbf

Vz

gimbal angle about y axis, rad

gimbal angle about z axis, rad

ey angular misalignment of fixed thrusters about y axis, rad

ez angular misalignment of fixed thrusters about z axis, rad

Positive angles are defined as counterclockwise about the positive axis in question. The fixed thruster

term uses small angle approximations; the gimballed thruster force is derived in section 2.3.3.2.
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For COLD-SATthe thrust level of the gimballed thruster FTG is 0.04 lbf and corresponds to the

minimum thrust level required to conduct some of the onboard experiments. When an experiment

requires axial thrust levels higher than 0.04 lbf, FIT is commanded to produce a force equal to the

required thrust less 0.04 Ibf. This arrangement provides the required thrust vector control by
gimballing a single, low-thrust thruster.

The gimbal angles yy and Yz are determined by the attitude control system in a manner to reduce
attitude error. Refer to section 3.7.2 for a description of this calculation.

2.3.3.2 Glmbal model.--The gimballed thruster system consists of a 0.04-1bf hydrazine thruster

mounted on two single-axis antenna gimbal mechanisms. Gimbal #1 is attached to the spacecraft and

can rotate as much as +20 ° about the spacecraft y axis; gimbal #2 is mounted on gimbal #1 and can

rotate as much as _+20° about the z axis. The rotation angle of gimbal #1 is designated as yy, and the
rotation angle of gimbal #2 as Yz" Therefore, if by defining a coordinate system fixed in the thruster

itself and assuming that the thruster force vector is directed along the +x axis of the thruster coordinate

system, the thrust vector produced by the gimballed thruster in spacecraft coordinates can be
determined by applying this coordinate transformation:

0Fro-- , 0 |[sinv cos'¢ 
L-sinvy o cos yy][. 0 0

0

_] [O'04"o0(lbf)]

Multiplying the matrices in the proper order gives the gimballed-thruster thrust vector in terms of the

gimbal angles, which is the first term of the equation given in section 2.3.3.1. The desired gimbal
angles are computed by the rotation model as a function of attitude error, integral of attitude error, and
attitude rote.

2.3.3.3 Thrust decay Colowdown system).--In order to accurately model the thrust produced by a

blowdown system, the thrust magnitude FT = FIT + FTG is allowed to vary as a function of hydrazine

usage in the model by means of a table-lookup algorithm. For a blowdown system FT is a linear
function of pressure, which drops as hydmzine is expended. The tank is repressurized with helium as

required during the spacecraft life in order to maintain a workable hydrazine pressure. A typical graph
of system pressure Psys as a function of hydrazine expended is shown in figure 2.3. The thrust level is
related to the system pressure by

8

Fz= (Fr)nom /,

where (FT)nom is the nominal thrust level, Psys is the system pressure (as given in fig. 2.3), and Pnom

is the nominal system pressure (assumed to be 150 psia for COLD-SAT). The rate of change of

hydrazine mass (denoted mN2H4 ) is a function of the actual thrust Fr as follows:

dmN2H4 _ _ FT

where lsp is the specific impulse, a function of the system design. If a pressure-regulated hydrazine

supply system is used, then the effect of system pressure can be eliminated by setting the system

pressure variable Psys (as a function of hydrazine mass) to a constant value.
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2.3.4TranslationalForceResultingFrom UnpairedRCSThrusters

ThebaselineCOLD-SATRCSsystemisan uncoupled-thruster system with eight thrusters, which

produce torque couples only about the x axis (see section 3.2.3.2). When control thrusters are fired to

produce torques about the y and z axes with such a system, a linear acceleration will be produced in

the +x direction. The COLD-SAT dynamic model accounts for this linear acceleration in the transla-

tion model as F'RCS"

2.4 Approximation of Spacecraft Mass

The mass of the COLD-SAT spacecraft varies over the life of the mission because of the various

experimental and propulsion system fluids used. For the purposes of the model the total spacecraft

mass is considered to be the sum of three components:

ms/C = m&y + mH2 + mN2H4

where mdry is the mass of the spacecraft minus the mass of all expendable fluids, mN2H4 is the mass

of hydrazine used for all axial thrusters, which is computed as indicated in section 2.3.3,3, and m8 is
the mass of all other expendable fluids onboard, primarily liquid H2, which is entered into the m(_12el
as a table of mass versus time.

2.5 Computation of Spacecraft Position and Velocity Vectors

The resulting acceleration due to all external forces acting on the spacecraft in body coordinates is

given as follows:

(_ext)S/C =
ms/c

This acceleration vector is then transformed into TOD coordinates as follows:

0

(_ext)TOD

0

C

where

?:

actual spacecraft attitude quaternion (When the translation model is used alone, the desired

attitude quatemion is used in place of the actual attitude quaternion because the latter must

be computed by the rotation model.)

conjugate of spacecraft attitude quatemion
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• signifies quatemion multiplication

The notation

spacecraft linear acceleration due external forces in TOD coordinates

represents a quatemion whose scalar part is zero and whose vector part is equal to the vector _. Refer
to appendix B for a description of quatemion algebra.

where

Thus, the total linear acceleration acting on the spacecraft due to all modeled forces is expressed as

_*- _-* + (_ext)TOD

a total spacecraft linear acceleration in TOD coordinates

_-" spacecraft linear acceleration due to Earth gravity in TOD coordinates

The spacecraft velocity and position vectors can now be computed as

vTt)= f,0 a-Tr)ar+ %

where

R_t) = fro t V--_T)dT +

R" spacecraft position vector in TOD coordinates

v spacecraft velocity vector in TOD coordinates

initial position vector (see section 2.2)

_0 initial velocity vector (see section 2.2)
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2.6 Computation of Desired Attitude Quaternion

2.6.1 Overview

The COLD--SAT attitude model computes a quaternion that represents the desired attitude of the

spacecraft. The actual spacecraft attitude quaternion is computed by the rotation model. The purpose

of the desired attitude quaternion is to provide a reference attitude so that the attitude error (a measure

of the difference between this desired attitude and the actual attitude) can be computed. The attitude

control system then uses this information to correct the actual spacecraft attitude so that it is as close

to the desired attitude as possible. The desired spacecraft attitude options are defined by the alignment

of certain spacecraft axes with certain base unit vectors, which are defined in TOD coordinates.

The COLD--SAT dynamic model allows an attitude to be selected from among nine basic options.

Within each option several suboptions are permitted. The attitude may then be further modified by

specifying a fixed or time-varying rotation about any one of the spacecraft axes. Figures 2.4 to 2.12
are pictorial representations of each of the attitude options. The computation of the desired spacecraft

attitude proceeds as follows depending upon the user-specified attitude option, axis alignment, and

optional spacecraft rotation:

(1) Computation of the position of the Sun in TOD coordinates based upon the Julian date at the
start of the simulation and the simulation time

(2) Computation of two orthogonai unit vectors, which are called base vectors in the discussion that

follows and are expressed in TOD coordinates. Nine combinations of base vectors, called attitude
options, are predofined in the model. The desired attitude option is specified by the user at the start of
the simulation.

(3) Determination of the spacecraft axes that are to be aligned with each base vector; ekher positive

or negative spacecraft axes may be specified. This results in 12 possible attitude variations for each

pair of base vectors selected. The desired spacecraft axis alignment is specified by the user at the start
of the simulation.

(4) Computation of the rotation axis and the rotation angle for the optional spacecraft rotation. The

rotation axis may be any positive or negative spacecraft axis; the rotation angle is expressed as

t(t) = _t + %

The rotation axis, as well as the values of t and e0, is specified by the user at the start of the
simulation.

(5) Computation of the desired attitude matrix (direction-cosine matrix) based on steps (1)

through (4)

(6) Extraction of the desired attitude quaternion from the desired attitude matrix

Each of these steps is described in detail in sections 2.6.3 to 2.6.8.
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2.6,2Sun Model

The Sun model computes the position of the Sun in TOD coordinates on a given Julian date, as

well as a unit vector normal to the plane of the ecliptic, also expressed in TOD coordinates (ref. 3).

The mean solar longitude with respect to the TOD vernal equinox _ms, in degrees, is computed in

Earth-centered ecliptic coordinates (see appendix C for a description of this coordinate system) as
follows:

_ms = 280"460 + 0"9856474°(JD2000)

where (JD2000) is the Julian date referenced to the year 2000. The Sun's mean anomaly M, in degrees,
is now computed as

M = 357.528 ° + 0.98560030(JD2000)

The ecliptic longitude of the Sun _ccl, in degrees, is computed as

_ecl = _ms + 1"915° sin(M) + 0.020 ° sin(2M)

The unit vector in the direction of the Sun _Sun and a vector normal to the plane of the ecliptic v'_l
are expressed as follows in ecliptic coordinates:

U"Sun(e)= sin(_ecl)
0

The same vectors are expressed in TOD coordinates as follows:

[!"sun)x]r ]
_Sun = I(t_san), i = [(USu.).v(e)c°s{23"439° - 4-10-7(JD200o)}/

l( s ,J L(_sun),(e)sin{23.439° - 4x 10-7(JD2000)}J

..1 0 ]_ecl = [(Uecl)y / = in(23.439 ° - 4x 10-TJD2000)

U(Vecl)LJ [_cos(23.439° - 4x 10-TjD2ooo) J
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2.6.3BaseVectors

Two orthonormal base vectors, designated _1 and _2, are used to define each of the nine options

built into the COLD-SAT dynamic model. These base vectors are selected from the normalized

position, velocity, Sun, and ecliptic-normal vectors or from some mathematical combination of two or

more of these vectors. Each of the nine attitude options is defined in table 2.1 and illustrated in

figures 2.4 to 2.12.

The two base vectors are chosen from the following list of unit vectors as defined in table 2.1,

depending on which of the nine attitude options is selected:

U-_un unit vector in direction of Sun (This vector is computed by the Sun model.)

b-'ecI unit vector normal to plane of ecliptic (This vector is also computed by the Sun model.)

unit spacecraft geocentric position vector (This vector is the normalized spacecraft position

vector _'.)

v-_ unit spacecraft velocity vector (This vector is the normalized spacecraft velocity vector _.)

unit vector normal to spacecraft orbit plane, [4 x u_[

unit vector in direction of projection of Sun vector into spacecraft orbit plane,

I 'Nx

unit vector in plane formed by Sun vector and spacecraft velocity vector and normal to

_x u--SunIx

spacecraf velocityvector, x

unit vector in orbit plane and normal to Sun vector, ]V"Nx V'_un[ J

2.6.4 Spacecraft Axis Alignment With Base Vectors

Once the base vectors are defined, two of the spacecraft coordinate axes are aligned with the two

base vectors to establish the desired spacecraft attitude. This alignment of spacecraft axes with base

vectors is controlled by the manner in which the attitude matrix is constructed, as described next.
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2.6.5 Computationof DesiredAttitude (Direction-Cosine)Matrix

Theattitudematrix (sometimes called a direction-cosine matrix) defines the transformation of a

vector from the TeD coordinate system to the spacecraR body coordinate system. The attitude matrix

is a 3x3 matrix with the property that each column (and each row as well) is a unit vector. If _TOD is

a vector defined in TeD coordinates and _C is the same vector expressed in spacecraft body

coordinates, the relationship between the two representations is

_S/C -- [TeD ---, S/CI_ToD

where [TeD _ S/C] is defined as the attitude matrix.

The attitude matrix is formed by substituting the two base vectors for the selected attitude option

into the two columns of the matrix that correspond to the two spacecmR axes which are to be aligned

with these base vectors. The first column of the matrix corresponds to the x axis, the second column

to the y axis, and the third column to the z axis. If the negative of a given axis is to be aligned with a

base vector, that vector is negated before substitution into the matrix. Because the base vectors are

unit vectors by definition, the remaining column of the matrix is found by taking the crossproduct of

the two vectors in the proper order to form a right-handed system.

In equation form, in order to align the spacecraft -x axis with the base vector _2 and the Z axis

with the base vector _11, the attitude matrix would be as follows:

[-4 I

As an example, for the attitude selected for COLD-SAT (attitude option 4, with the spacecraft -x axis

aligned with _2 and the spacecraft z axis aligned with _ ), the attitude matrix would be as follows:

2.6.6 180 ° Spacecraft Rotation

For attitude options 4, 7, and 8, the spacecraft is required to execute a 180 ° rotation about a given

axis whenever the Sun crosses the spacecraft orbit plane. This maneuver is necessary to allow the side
of the spacecraft along which the cryogenic lines are mn to remain shaded at all times and to

minimize the angle between the solar panel normal and the Sun vector. This rotation axis, expressed
in TOD coordinates, is as shown in table 2.2. The corresponding axis in spacecraft coordinates

depends upon which axis is aligned with the TOD vector.

It is undesirable to allow the desired spacecraft attitude to change instantaneously by 180 ° because
this would result in a sudden 180 ° attitude error. The subsequent response by the attitude control

system (ACS) to compensate would result in poor transient behavior, including large attitude rates,

with significant overshoot of the desired attitude and subsequent oscillation about the desired attitude

with a very long settling time. In order to avoid this problem, the change in desired attitude is

executed over a finite time tf.
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Theminimum achievable value for _ris

where

1

T

(tf)mi n "- 2_'T--

spacecraft moment of inertia about rotation axis

maximum control torque that ACS can produce about rotation axis

This equation assumes that the spacecraft undergoes a constant angular acceleration at the maximum

achievable rate during the first half of the 180 ° rotation maneuver and then decelerates at an equal rote
for the remainder of the maneuver.

For any time t/> (tf)mi n the desired attitude matrix is computed as follows:

A(t) = Rl(_)A(t0f)

where

A(O

A to)

RI( 

The angleT isexpressedinradiansas

w_ = lat2
2

desired attitude matrix at time t, where t is with respect to the start of the rotation (t0f)

desired attitude matrix at instant before time of desired attitude change

Euler matrix representing single rotation about appropriate spacecraft axis through angle _F

for O < t < 2tf

ltf< t < tf= 7[ - 0.5a(t:- 0 2 for

and

7[

2

This formulation for _F and a assumes a constant angular acceleration for the first 90 ° of rotation and

a constant deceleration for the remaining 90 ° of rotation. Other time functions for V could be used

but are not included in the current version of the model. The attitude quatemion is then extracted
from the desired attitude matrix in the usual manner.
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2.6.7 Optional Spacecraft Rotation

For certain attitude options it may be desired to specify a fixed angular offset from the nominal

attitude or a constant-rate rotation about a given axis (perhaps to keep solar arrays pointing toward the

Sun for continuously rotating attitude options). The rotation angle is specified as

¢(t) = tt + e0

where

rate of continuous spacecraft rotation, rad/sec

t simulation time, sec

¢0 constant spacecraft angular displacement, rad

The desired attitude matrix is formed as follows:

A(t) = R[t(t)]Ano m

where

R(_)

A_om

Euler rotation matrix of angle ¢ about specified axis

nominal spacecraft desired attitude matrix (before rotation)

2.6.8 Quaternion Extraction From Desired Attitude Matrix

A vector transformation (and thus the spacecraft attitude) can be equivalently represented by means

of a unit quaternion. Because quaternions are used throughout the model, it is required that the
attitude matrix representing the desired spacecraft attitude be converted into quaternion form. This is a

fairly straightforward procedure and is described here. If A is the desired attitude matrix and p is the

equivalent desired attitude unit quaternion, reference 4 gives A in terms of p as

2(/7(0)) + 2(/7(1)) 2 - 1
A = 2p<'>p<2>+ 2p%<3>

2p% <2>_ 2p<%<3>
2(p<0))2 + 2(p(2))2 _ 1

2p<2>p<3>+ 2p%<_>

2, %<3>÷ 2, % <2>
2/7 (,2)p<3) _ 2/7 (O)p(1)

2_,<°>)2÷ 2_,o>)2_ i
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and

p(0>

p<D

p <2>

pO>.

where p(0> is the scalar part of the quaternion.

Thus, by rearranging terms in the A matrix, the desired attitude quaternion elements can be solved
for in terms of the attitude matrix elements.

T = Tr[A] = All + A22 + A33

Because (p<0>)2+ (p(1))2+ (p(2))2+ (pO))2 __ I fora unitquaternion,

p(0>_ _/r_-+ 1
2

The magnitudes of the three vector elements of the quatemion can be computed as follows:

[P(/>l=+ 1[-_+ 1 -Tr(A)14 for i= 1,2,3

The signs of the three vector elements of the quaternion can be computed from the off-diagonal

elements. The indices i, j, and k are determined in cyclic order so that

Ip_>l _ Ip0>l, IpO[ _ [p<k>I

Now the vector elements of the quatemion can be determined as

p = sgnfAkj-Ayk))pO>l

pQ> = sgn[pbS(A_ + Aij)]lpQ>[

p _> = sgn[p (D(Aa + A/k)] IP q¢>l

where sgn(x) is the sign function (i.e., sgn(x) returns + 1 if the argument x is positive, 0 if the

argument is zero, and - 1 if the argument is negative).
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Thus, by using the preceding equations, the four elements of the quaternion can be computed.
resulting quatemion is then normalized by means of

where

IpJ = _/(p(o))2 + (p(l))2 + (p(2))2 + (p(3))2

The

2.7 Miscellaneous Calculations in Translation Model

2.7.1 Gr_nwich Hour Angle

The Greenwich hour angle is the angle between the Greenwich meridian and the TOD X axis. It is

computed by the following:

GHA = GHA 0 + t_Eaaht

where

GHAo

l_,Eagh

Greenwich hour angle at beginning of simulation, determined by given date and GMT at start
of simulation (ref. 3)

Earth rotation rate, 4.178074216x 10-3 deg/sec

The modulo function is applied to the GHA so that it will remain in the interval (0 °, 360°).

2.7.2 Axial-Thrust Misalignment Torque

This torque, which results from the thrust-vector offset from the CG, is computed in the translation

model. However, because this torque affects the rotational behavior of the spacecraft, it is discussed in
section 3.2.3.3.
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TABLE 2.1_BASE VECTOR DEFINITIONS FOR PROPOSED COLD-SAT ATYITUDE OPTIONS

Attitude Base Base Description

option vector, vector,

1 _Sma _ecl First axis is in direction of Sun, and second is normal to ecliptic; spacecraft rotates

once per year.

2 _R _3N First axis points away from center of Earth along position vector, and second is normal

to orbit plane; spacecraft rotates once per orbit.

3 _v _,v Similar to (2), except that first axis points along velocity vector and second is normal

to orbit plane; spacecraft rotates once per orbit.

4 i_, or - _s _sz One axis points toward projection of Sun vector into orbit plane, and other is normal or

negative-normal to orbit plane, in direction opposite the Sun, requiring a 180 ° rotation

when Sun crosses orbit plane; spacecraft rotates once per year; and 180 ° rotation occurs

several times per year for low-Earth orbit.

5 _ _sz Same as (4), except second axis is always positive-normal to orbit plane (i.e., no 180 °

rotation occurs); spacecraft rotates once per year.

6 _v _o" One spacecraft axis is in plane defined by Sun and velocity vectors; second axis is

aligned with velocity vector'.

7 _R _v or -_ One spacecraft axis is aligned with position vector, other axis is normal to orbit plane;

spacecraft rotates one revolution per orbit. Includes 180 ° rotation when Sun crosses

orbit plane.

8 _v _v or -_ One spacecraft axis is aligned with velocity vector, a second is aligned with orbit

normal that is on same side of orbit plane as Sun. Includes 180 ° rotation when Sun

crosses orbit plane.

9 _se, _p One spacecraft axis is in orbit plane; other points directly at Sun.

_l'ransition from +_/v to -_v occurs when the Sun crosses the spacecraft orbit plane. This maneuver is a spacecraft rotation about a

given axis and is done to minimize solar panel pointing loss.

TABLE 2.2_180 ° SPACECRAFT

ROTATION AXIS

Attitude Rotation axis vector

option (TOE) coordinates)

4 _sx

7 _a

8 i_ v
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Figure 2.1._Spherical TOD coordinate system used in gravity model.
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Figure 2.7.--Attitude option 4. (As Sun crosses the orbit plane,
the spacecraft is rotated 180 ° about the spacecraft axis that is
in the orbit plane and pointing in the direction of the Sun.)
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3.0 Rotation Model

The rotation model simulates the attitudinal motion of the spacecraft about its center of gravity.

This motion is a consequence of various disturbance torques acting on the spacecraft as well as torques

produced by the attitude control system to counteract the undesirable effects of these disturbance

torques. The torques that act upon the spacecraft may be categorized into three groups:

(1) External disturbance torques, which include the gravity-gradient, magnetic, solar pressure, and

aerodynamic drag torques. These torques are, in general, functions of spacecraft attitude, orbit

position, velocity, and spacecraft geometry and mass properties.

(2) Self-induced disturbance torques, which are generated by the spacecraft itself. These torques

include those produced by thrustor misalignments and slosh. They are not directly functions of

attitude, orbit position, or velocity but are related to spacecraft body rates, attitude error, and spacecraft

design tolerances.

(3) Control torques, which are intentionally applied to the spacecraft under the command of the

attitude control system. These torques are functions of attitude error and attitude rate. In practice

many types of systems are used to affect attitude control; the COLD-SAT dynamic model includes

(a) Coupled and uncoupled RCS thrusters

(b) A gimballed thruster, which provides both axial thrust and attitude control about two

spacecraft axes

(c) A reaction wheel, which is used to provide control about a single spacecraft axis

The sum of all torques acting on the spacecraft causes the spacecraft to experience angular

acceleration, the integral of which is the angular (body) rate. The angular rate in turn produces

changes in the spacecraft attitude. In the model the attitude is represented in quaternion form. This
attitude quaternion is compared with the desired attitude quaternion computed by the translation model

to arrive at the three-axis attitude error. The attitude error, along with the attitude rate, is used by the

attitude control system algorithms to produce the appropriate control torques for stabilizing the

spacecraft attitude.

This section describes in detail each of the following:

(1) Simulation of all torques included in the model except for the slosh torque. The slosh torque

computation, because of its complexity, forms a separate part of the COLD-SAT dynamic model (the
slosh model) and is discussed in section 4.0.

(2) Computation of the angular acceleration and the angular rates

(3) Computation of the actual spacecraft attitude quaternion

(4) Computation of the attitude error

(5) Description of the attitude control system algorithms
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Therotationmodelalsoincludesthecomputationof themicrogmvityaccelerations at arbitrarily

selectable points within the spacecraft. A detailed description of these calculations is deferred to

section 5.0 of this report. A block diagram of the rotation model is shown in figure 1.3.

3.1 Interfaces of Rotation Model

Interfaces between the rotation model and the translation model were given in section 2.1. The

interfaces between the rotation model and the slosh model, as well as input and output quantities of

the rotation model, are given here. The following quantities are computed by the rotation model and
passed to the slosh model:

(1) The actual spacecraft attitude quaternion

(2) The spacecraft attitude-rate vector

The slosh torque is computed by the slosh model and passed to the rotation model to compute the total
disturbance torque.

The following inputs to the rotation model are user specified at the start of the simulation:

(l) Spacecraft rotational mass properties, which include moments and products of inertia

(2) Spacecraft magnetic dipole moment, which is used in computing magnetic torque

(3) Solar and geomagnetic parameters, which are used in computing atmospheric density and hence
atmospheric drag torque

(4) Number, location, and thrust of RCS thrusters

(5) Reaction wheel moment of inertia

(6) Initial attitude rates

In addition, numerous program flag variables can be set to disable portions of the model, including

attitude control system devices not desired to be simulated. Rotation model outputs typically plotted

include, but are by no means limited to, attitude errors and rates, microgravity accelerations, gimbal
angles, and total disturbance torques.

3.2 Simulation of Torques Acting on Spacecraft

3.2.1 External Disturbance Torques

3.2.1.1 Gravity-gradient torque model.---Gravitational and centripetal forces, which maintain the

spacecraft in its orbit, are equal and opposite only at the spacecraft CG point. At all other points on

the spacecraft body there is a slight imbalance between these two forces, which results in a net torque
on the spacecraft. This torque is called the gravity-gradient torque and is a function of the orbit alti-

tude as well as the rotational mass properties of the spacecraft.
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Gravity-gradient torque in the COLD-SAT dynamic model is computed by using a spherical Earth

gravity model as follows:

where

IMp

gF__th

R

Rs:c

gravity-gradient torque acting on spacecraft, ft-ibf

spacecraft rotational mass-properties matrix (refer to section 3.3.1), ft-lbf-sec 2

Earth gravitational constant, 1.4076469x 1016 ft3/sec2

magnitude of spacecraft position vector, ft

spacecraft position vector transformed into spacecraft body coordinates, ft, which are

transformed from TOD coordinates as follows:

A typical plot of gravity gradient torque versus time for the COLD-SAT spacecraft over approxi-

mately one orbit, showing x, y, and z components, is given in figure 3.1. The gravity-gradient torque

can be seen to exist predominantly about the z axis for this attitude and is of sinusoidal form with a

period of one-half the orbit period. This plot, as well as all others to follow, are for zero axial thrust

and without the reaction wheel active (because in the final COLD-SAT design the reaction wheel was
eliminated). All simulation results in this document are from the same simulation run to allow direct

comparison between different plots. The attitude option is that selected for the final design.

3.2.1.2 Magnetic tortlue.--The spacecraft is assumed to have a net magnetic dipole moment/_s/c

(in ampere-square meters) that is randomly aligned with respect to the spacecraft coordinate axes. The
interaction of this magnetic dipole moment with the Earth's magnetic field produces a torque on the

spacecraft, which is given as follows:

rmag = (0.73717 /c × S/C

where (BEarth)S/C is the Earth's magnetic flux density vector (in tesla) transformed into spacecraft

coordinates. The conversion factor of 0.73717 is required to convert the computed torque (in newton-

meters) to English units (foot-pounds-force). COLD--SAT is assumed to be a class 3 spacecraft, with

a residual magnetic dipole moment of 30 A-m 2.

In order to compute B'_Earth,it is necessary to have a reasonably accurate model of the Earth's mag-

netic field. In the COLD-SAT dynamic model the Earth's magnetic field is modeled as a tilted dipole

with strength MEarth = 8.1x 1022 A-m 2. The flux density produced by this dipole (B_Eaah)M, in

spherical magnetic coordinates, is given by the following expression:
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(BEarth)M =

where

P0 permeability constant, 4_x 10-7 H/m

R magnitude of spacecraft position vector, m

_M spacecraftmagneticlatitudemeasured from theEarth'smagneticequator,which iscomputed as

f_M = tan-II_[ RM

where

R M = [TOD --- M]R

and RM is the spacecraft position vector expressed in Earth-centered magnetic coordinates (refer to

appendix C). The matrix [TOD -. M] is the transformation from TOD to magnetic coordinates and is

derived in appendix C.

The vector (BEatth)M, as computed previously, is in spherical magnetic coordinates with the R

component directed away from the center of the Earth and the positive _M component directed

perpendicular to R and toward magnetic north. This vector is converted into the rectangular
magnetic coordinates as follows:

I1I°(B_Ea_h)M= By = in 0M cos eM

sin _M
z (E_) M

-c°S OM sin CMlIBR 1

-sin 0 M sin CM/IR, /

yo-Jcos ¢_M

where 0 M is the spacecraft magnetic longitude, which is computed as

OM= tan-l[ (Ry)M]

[(Rx)M]
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Thevector BEatth is now transformed to TeD coordinates:

(BEaah)TOD = [TOD _ M] )M

Finally, the flux density is transformed into spacecraft coordinates by using the usual quatemion
transformation as follows:

el-. "- = -. --
(BEarth)StC L(BEa_)TODJ

where 7qis the spacecraft attitude quaternion.

A typical plot of magnetic torque versus time for the COLD-SAT spacecraft over approximately

one orbit, showing x, y, and z components, is given in figure 3.2. There is no magnetic torque about
the x axis because the spacecraft magnetic dipole moment chosen was aligned with the spacecraft
x axis.

3.2.1.3 Aerodynamic drag torque.--Aerodynamic drag torque is produced by the effect of

unbalanced (with respect to the CG) drag forces acting on the spacecraft (refer to section 2.3.2 for

computation of the aerodynamic drag force). The following quantities are the coordinates of the
centroid of the projected spacecraft area along each principal coordinate axis:

Xz,yz x and y coordinates, respectively, of centroid of projected area normal to spacecraft z axis

y.r,zx y and z coordinates, respectively, of centroid of projected area normal to spacecraft x axis

Xy,Zy x and z coordinates, respectively, of centroid of projected area normal to spacecraft y axis

The aerodynamic torque can then be computed as follows:

z drag LYx(Fdrag)x xy<Fdrag)YJ

.--.4.

where Fdlag , the aerodynamic drag force, was computed in section 2.3.2.

A typical plot of aerodynamic drag versus time for the COLD-SAT spacecraft over approximately

one orbit, showing x, y, and z components, is given in figure 3.3. The apparent ripple in the curves

results from the fact that the atmospheric density is computed at approximately 1-min intervals to

reduce execution time. This computation involves iterative routines, and if computed continuously,

would consume excessive central processing unit (CPU) time. Furthermore, this torque is very small
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relativeto the dominant gravity-gradient torque so that highly accurate computation is not required.

There is no drag torque about the x axis because the spacecraft as modeled is completely symmetrical

with respect to the x axis. (CG shift from the nominal CG location is neglected for this computation.)

3.2.1.4 Solar pressure torque modeLgThe Sun shining on a surface is equivalent to the surface

being bombarded by photons; it produces a pressure on the surface. Because, in general, the surface

area of the COLD-SAT spacecraft upon which the Sun is shining is not symmetrical with respect to

the CG, this solar radiation pressure will produce a disturbance torque on the spacecraft.

Highly accurate modeling of the solar pressure torque produced on a spacecraft requires a finite-

element approach, which is very costly in terms of CPU time. For the purposes of the COLX)-SAT

spacecraft, a much simpler, less accurate approach will suffice, because the solar pressure torque is
very small relative to the dominant gravity-gradient torque.

The solar pressure torque modeling approach chosen for the COLD-SAT dynamic model will pro-

duce correct results only for the attitude option and axis alignment chosen for the COLD-SAT design,

which is attitude option 4 with the spacecraft z axis aligned with _, the orbit plane normal, and the

-x axis aligned with _2, in the orbit plane pointed toward the Sun (refer to section 2.6).

If the COI.X)-SAT spacecraft is considered to consist of a cylinder and a truncated cone, as shown

in figure 3.4, with the CG located at the center of the cylinder, it is apparent that the net torque

produced by sunlight striking the cylinder and the solar panels (which are perpendicular to the page in

figure 3.4) will be zero, because both are completely symmetrical with respect to the CG. Solar pressure
torque will be produced only when sunlight strikes the conical portion of the spacecraR. Since the

Sun always lies in the x-z plane and the angle 15varies between 0° and 41 °, the solar pressure torque
will be zero when the angle [_ is less than 15° because the conical portion of the spacecraft will be in

shadow. If _ is greater than 15°, sunlight will strike the conical portion of the spacecraft and a

negative solar pressure torque will be produced about the spacecraft y axis.

The value of this torque is computed as follows: As given in reference 5 the solar pressure force

produced by sunlight striking an object of small surface area dA is given by

where

Psolar

P

_Sun

dFsolar= -Psolar(I + P)(_Sun "_n)2_ndA

solar constant, 9.4x 10-8 lbf/ft 2 at 1 AU

surface refiectivity (p = 1 for highly reflective surface, p = 0 for black surface)

unit Sun vector

unit vector normal to area dA

The l_lanar projection of the conical area of the spacecraft in any direction normal to the surface is
75.44 ft" as shown in figure 3.4. The torque moment arm (the distance between the centroid of the

projected conical area and the spacecraft CG) [ is 11.3 ft as determined from figure 3.4. Assuming a

worst-case reflectivity of 1 and realizing that _Sun " _n -- cos 0 -- sin(_ - 15°), the solar pressure

torque can be computed by the following equation:
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_yKml_vsin2(rsot_ = - 13 - 15°)

l'solar_ = 0-_ for I_< 15°

for I_ > 15°

where

Ksola, solartorqueconstant,Psolar(l+ p)A_,1.6x10-4 ft-lbfforCOLD--SAT spacecraft

S V solar visibility flag, 1 for visible Sun and 0 for eclipse

[ "] deg or radsolar beta angle, cos -1 (-_Sun)S/C "vx ,

unit vector in direction of spacecraft x axis

unit vector in direction of spacecraft y axis

unit Sun vector, transformed into spacecraft coordinates

It should be emphasized that this solar pressure model is highly specific to COLD-SAT and is

generally not applicable to other spacecraft. Furthermore, it is only valid for small attitude errors.

Figure 3.5 is a typical plot of solar pressure torque versus time for the COLD-SAT spacecraft over

approximately one orbit, showing x, y, and z components. As previously discussed, this torque is

modeled about the y axis only. In the regions designated A on the plot, the Sun is visible and thus the

solar pressure torque is nonzero; in region B the Sun is blocked by the Earth and the solar pressure

torque is zero.

In order to accurately compute solar pressure torque, it is necessary to determine when the Sun is

blocked by the Earth. The solar blockage routine in the COLD-SAT dynamic model determines

whether the spacecraft is in sunlight, penumbra, or umbra and sets the value of the solar visibility flag

S v to 1, 1/2, or 0, respectively. Figure 3.6 represents the plane that contains the Sun, the Earth, and

the spacecraft, showing the umbra and the penumbra. If an angle 0nude is defined as the angle
measured from the subsolar point (i.e., the point of intersection between the Earth-center-to-Sun-center

line and the spacecraft orbit) to the spacecraft position vector, whether the spacecraft is in umbra,
penumbra, or sunlight can be determined by the following:

S v = 1 for Orange < 0/, (sunlight)

1

S v = _ for 0_, <: Orange < 0 v (penumbra)

S v = 0 for Orange > 0 v (umbra)

Because the umbra and the penumbra are symmetrical with respect to the Earth-center-to-Sun-center

line, all angles measured from the subsolar point can be considered to be in the first or second

quadrant only (i.e., 00 _ 0 < 180°). Thus, angles measured from either side of the subsolar point are

considered to be positive. The angle Orange is computed by
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where _R and _Sun are unit vectors as defined in section 2.6.3. The angles 0p and 0 U are measured

from the subsolar point to the points where the penumbra and umbra each intersect the spacecraft
orbit, respectively. They are computed as follows:

0 u=90 °+0_+ Oar+Oal t

where Oesdu is the correction for the difference between the Earth's radius and the Sun's radius for the
umbra and is computed as follows:

tan-IIRsun - RF--a_1 =

Oesdu = t' _u_h=--_un ') 0"26412°

and

Rsu n solar radius, 2.28346x l09 ft

RFa_ Earth equatorial radius, 20 925 656 ft

DF_.anh-Sun Earth-Sun distance, 1 AU or 4.908066x1011 ft

The correction for atmospheric refraction, Oar(in degrees), is given as follows:

Oar = 1.133 - 0.566e -0"17x'lt

where Xalt is the spacecraft altitude in nautical miles. This term is essentially constant at 1.133 for

altitudes above 100 nautical miles. The altitude correction Oat is computed as follows:

For the penumbra,

0p = 90 ° - Oesdp + Oa_ + Oalt

where Oesdp is the Earth and Sun radii correction term for the penumbra, given as

0esdp = tan-ll Rsun+ REarth) = 0.26901 °

and Oar and 0alt are the same as for the umbra.
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3.2.2 Slosh Torque

The torque acting on the spacecraft is computed by the slosh model, which is discussed in detail in
section 4.0.

3.2.3 Thruster-Generated Torques

3.2.3.1 General.--Any thruster produces a translational force on the spacecraft in the direction of

the thrust vector. If the thrust vector does not pass through the spacecraft CG, it will also produce a

torque. A spacecraft thruster is classified as an RCS thruster if its purpose is to produce a control

torque on the spacecraft; as a fixed axial thruster if its purpose is to produce a translational force on

the spacecraft; or as a gimballed axial thruster if its purpose is to produce both a translational force

and a control torque. However, because of thruster misalignments and spacecraft CG shifts, in general

all of these classes of thrusters will produce both rotational torques and translational forces, and the
undesired force or torque will constitute an additional disturbance on the spacecraft translational or

rotational dynamics. All three of these thruster classes are present on the COIJ)-SAT spacecraft and

are discussed in detail in subsequent sections.

The purpose of the RCS is to provide control torques on the spacecraft in order to maintain the

desired spacecraft attitude. The primary advantages of an RCS over other attitude control schemes are
relatively low cost, less complexity, high reliability, and ability to control both cyclical and secular

disturbances for axial-thrust and no-axial-thrust conditions. The principal disadvantage of such a

system is that the discontinuous nature of this type of control degrades the experimental microgravity

environment (see section 5.0). An RCS can be classified as a coupled or uncoupled scheme,

depending on whether or not the torques produced are pure couples. An uncoupled RCS scheme,

which is discussed in detail in section 3.2.3.2, will always produce a translational force on the

spacecraft regardless of whether thruster misalignments are present. This translational force will result

in additional microgravity disturbances and will, over time, affect the spacecraft orbit. However, this

uncoupled RCS scheme is advantageous from a cost or complexity point of view, and despite its

disadvantages, was chosen as the baseline RCS for COLD-SAT. From a simulation point of view,

however, the two types of systems are the same, except that the thrust produced by certain thrusters is

set to zero when simulating the uncoupled system.

A fixed axial thruster is designed to produce a translational force on the spacecraft for the purpose

of inducing a controlled microgravity acceleration inside the experiment tanks. However, because of
CG shift and thruster misalignments, a torque will also be produced as previously discussed. This

torque constitutes a disturbance that must be counteracted by the attitude control system.

A gimballed axial thruster is a single low-thrust device attached to a bi-axial gimbal mechanism.

This device serves two purposes: First, it augments the thrust produced by the fixed thrusters in order

to maintain the desired acceleration of the spacecraft; and second, it constitutes part of the attitude

control system because the orientation of the thrust vector produced by this thruster with respect to the

CG can be controlled, thus providing a control torque on the spacecraft.

The torque produced by any thruster _-" can be computed by the simple crossproduct rule:

_'*= F'x F
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where

F thrust vector produced by thruster

f" vector from location of thruster (i.e., point of application of thrust vector to spacecraft rigid
body) to spacecraft CG

For each thruster the values of F" and P'_ are given in tabular form as part of the user-supplied model

input data. The preceding equation is used to compute the torque for each thruster that is turned on.

The torques from each individual thruster are added to obtain the total thruster-produced torque acting
on the spacecraft.

3.2.3.2 RCS thruster torques.raThe COLD--SAT dynamic model can model any desired number of

RCS thrusters, whose steady-state thrust level, orientation, and location with respect to the CG can be
specified by the user. For COLD--SAT two different RCS schemes were considered:

(1) A coupled RCS system, which utilizes twelve 0.06-1bf thrusters located as shown in figure 3.7.
The thrusters are always fired in pairs so that the resulting torques are always pure couples (i.e., there

is no translational force acting on the spacecraft when a thruster is fired).

(2) An uncoupled RCS system, which utilizes the same eight rear thrusters; however, the four front

thrusters (2, 4, 6, and 8) are eliminated. This scheme results in considerable cost savings, because the

four front thrusters and the associated hydrazine lines and line heaters running from the tanks in the

rear of the spacecraft are eliminated. However, the torques produced about the y and z spacecraft axes

are no longer couples (i.e., there is a translational force produced in the +x direction whenever a y axis

or z axis RCS thmster is fh'ed). Also less control torque is available about the y and z axes because
only a single thruster is fired instead of the two thrusters fired with the coupled scheme. Note that the

torques produced about the x axis are still pure couples.

In addition, it was assumed that all RCS thrusters are misaligned with respect to the spacecraft

coordinate axes by 1°, so that when a control torque is required about a given axis and the appropriate

thruster (or thrusters) is fired, disturbance torques will be produced about the other two spacecraR axes
as well. These misalignments are included in the COLD-SAT dynamic model and are chosen such

that the resulting disturbance torques are maximized. The following data are entered to simulate any
RCS system in the COLD-SAT dynamic model:

(1) The number of RCS thrusters

(2) A table of the steady-state thrust vector produced by each thruster, including any misalignments

(3) A table of the coordinates of each thruster in the x',y',z' system (see section 2.0). The distance
of the CG from the plane containing the back thrusters is entered into the axial thrust model. CG

shift from nominal along the y and z axes is neglected in RCS torque calculations.

For COLD-SAT the number of thrusters is set to 12 for either the coupled or uncoupled scheme. The

thrust vectors produced by each thruster are as given in table 3.1. In order to simulate the uncoupled
scheme, the thrust vectors produced by thrusters 2, 4, 6, and 8 are set to zero.

The coordinates of each thruster in the x',y',z' system are specified by the user. The coordinates of

the thrusters relative to the spacecraft CG can then be readily computed by specifying the spacecraft
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CGlocationrelativeto the origin of the x',y',Y system. These torques are computed only once at the

beginning of the simulation, in order to reduce CPU time; therefore, subsequent movement of the CG
will not be accounted for in the RCS simulation. However, this is not a serious model limitation

because simulation of the full-up model rarely, if ever, is run for more than a few hours, over which

time the CG can be expected to move very little. Because the y and z CG offsets, (3' - Y') and (z - z'),

are very small, these offsets are ignored in computing RCS torques. These thruster locations (table 3.2)

assume that the front thruster ring is 286.91 inches from the back ring and that the thruster ring radii

are 48 inches for the back thruster ring and 20 inches for the front thruster ring.

From these coordinates a vector (rRCS) i is formed from the thruster to the CG for each thruster as

follows:

(rRCS) i =

-(x_RCS) / - (X_CG)i

-CY'acs)i

-(Yacs)i

where

(X'RCS)i, (Y'RCS)i, coordinates of Rh RCS thruster in spacecraft x', y', z' system as given in

(YRCS)i table 3.2

f

x CG spacecraft CG x coordinate in x', y', z' spacecraft coordinate system (i.e., distance

of CG from rear thruster ring)

Recall that Y'CG and Z'CG are assumed to be zero and thus are not included in the computation of

CRacs)i.

Next, the torque produced by each thruster is found by

CS)i = i rRCS)i x CS)i for i = 1,12

where

factor between 0 and 1 representing starmp and shutdown transient of thruster i as

discussed in section 3.2.3.2

thrust vector produced by ith RCS thruster, as given in table 3.1

On the basis of the thruster locations and thrust vectors given for COLD-SAT, the resulting torque

and translational force produced by each thruster are computed in the model. The information given

in tables 3.3 and 3.4 is presented for informational purposes and illustrates the torques and

translational forces for a typical simulation run, for thrusters that are perfectly aligned with the

spacecraft primary axes (table 3.3) and for thrusters with selected 1° misalignments (table 3.4). The

direction of each thruster misalignment is chosen so that the resulting disturbance torques are
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maximized. For both tables x'CG is assumed to be 85.5 inches. Thrusters are always fired in pairs
(l&2, 3&4, 5&6, 7&8, 9&10, 1l&12) as discussed in later sections.

The design of RCS thrusters is such that when a thruster is fired, it will remain "on" for a

predetermined minimum amount of time, designated tmin on" This is done in order to increase the

efficiency of the RCS. Furthermore, each thruster exhibits startup and shutdown transients, denoted tsu
and tsd, respectively. In reality, the starmp transient is a second-order underdamped step response and

the shutdown transient is a decaying exponential, but in order to reduce unnecessary overhead, it is

reasonable to model these transients linearly as shown in figure 3.8. These transients are modeled by

multiplying the steady-state RCS torque for thruster i, as computed previously in this section by a

factor (Stnms)i of 0 to 1. If thruster i is in a full-on or full-off state, then S(trw)i -- 1 or S(mms)i ffi0,

respectively; if thruster i is in a startup or shutdown transient, then 0 < S(tram)i < 1.

3.2.3.3 Axial-thruster-induced torque.--The axial thrust vector F'_Tdiscussed in section 2.3.3 is the

vector sum of the thrust vectors that are produced by the fixed and gimballed thrusters, F_TFand F-*TG,

respectively. If this thrust vector does not pass directly through the CG, a torque on the spacecraft

will be produced. This torque comprises both a disturbance torque and a control torque. If the
gimballed thruster were not present, or if the gimbal mechanism were to fail, the resultant thrust vector

would not, in general, pass through the CG, and thus a disturbance torque would result whenever the
axial thrusters were fired. With the gimballed thruster in operation, however, the direction of the

gimballed-thruster thrust vector can be used to provide an attitude control torque of sufficient magni-

tude to counteract all expected disturbance torques, including that produced by the thrust-vector-CG

offset of the fixed thrusters. This attitude control scheme will eliminate virtually all RCS thruster

firings during periods of axial thrust and result in an excellent experimental microgravity environment.

The torque produced by the axial thrusters (fixed and gimballed) is given as

where

Fr

_r=F'x F r

thrust vector computed in section 2.3.3

vector from origin of X'so Y'SC, Z'SC coordinate system to CG

The total thrust vector resulting from fixed and gimballed thrusters is assumed to pass through the

origin of the X's/c, Y'S/C, z's/c coordinate system. It is defined as follows:

 c°l

L_CGJ

where x'CG, Y'CG' and Z'CG are the coordinates of the spacecraft CG.
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The gimballed thruster is assumed to be driven by a stepper motor, which is modeled as a

second-order system (with quantized input) as follows:

M(s)=

2
0.)11

S 2 + 2_to,d + to_

It is assumed that i_ = 0.7071 and ton = 0.00584, which results in 5-percent overshoot and a time to
first peak (for a step command) of about 12.6 min. The input of M(s) is quantized with a step size of

0.07815 dog/step.

3-2.4 Reaction Wheel Torque

A single-axis reaction wheel has been considered for COIA3-SAT in order to improve the

microgravity environment during periods of zero axial thrust. The dominant disturbance torque

encountered under these conditions is the gravity-gradient torque. This torque appears predominantly

about the spacecraft z axis and is cyclical. Thus, a single, modestly sized reaction wheel would be

able to remove this disturbance torque over long periods of time without saturating and would

eliminate the need for nearly all RCS firings during periods of zero axial thrust. A block diagram of

the reaction wheel model in rotational dynamics is shown as part of figure 1.3.

The single-axis reaction wheel in the model includes static and viscous friction. Viscous friction is

computed as follows:

rfv = Fete_

where

F v viscous friction coefficient

torw reaction wheel angular speed, rad/sec

The torque developed by the motor is given as

where

Km DC motor torque constant, ft-lbf/V

VA DC voltage applied to motor, V

Thus, the total torque is

Td = rmVA

Ttota I = Tde v - Tj_
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A switch state ScfiS used to indicate if the wheel is stuck because of static friction. If ScfiS

positive, the wheel is spinning in a positive direction; if Scf is zero, the wheel is not moving; and if Scf

is negative, the wheel is spinning in a negative direction. The value of Scf is determined as follows:

Scf(t *) = +1 for (Scf = 0) and (Td¢v > Tc) or (Scf = +1) and (torw • TOL)

Scf(t +) = 0 for (Scf= O) and ([Tdev[ < Tc) or (Scf * 0) and (Itor l < TOL)

Scf(t +) = -1 for (Scf = 0) and (Tdev < -Tc) or (Scf = -1) and (t0rw < -TOL)

where

Tc

TOL

static friction torque that is constant based on physical characteristics of reaction wheel, ft-lbf

very small positive number (TOL << 1), typically on order of 10-7

The rate of change of wheel angular speed is given by

Troll

&rw- lw for Scf* 0

6_rw = 0 for Scf = 0

where 1w is the wheel moment of inertia; thus,

to,- =

The resulting control torque on the spacecraft when the wheel is spinning is

If the wheel is stuck because of static friction, the control torque on the spacecraft is zero, even though

Ttot_ may be nonzero.

The reaction wheel angular momentum (in inertial coordinates) must be accounted for in the

spacecraft equations of motion as follows:
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0L_rw = 0

'w(O r + %)

where _z is the z component of the spacecraft angular body rate vector.

3.3 Spacecraft Rotational Dynamics

3.3.1 Rotational Mass Properties

Spacecraft rotational mass properties are in the form of a moment-of-inertia matrix, defined as

where Ix, ly, and Iz are the moments of inertia, defined as

= ._/c(y 2+ z2)dm, 'y = fS/c(X 2+ z2)dm,Ix

and Ixy, lxz, and ly z are the products of inertia, defined as

The matrix IMp is a user-specified input to the model.

lz = fS/C(X 2 + y 2)dm

ly z = - fs/cYZ dm

3.3.2 Computation of Angular Body Rates

The rotational dynamic equation of motion is a first-order vector differential equation that allows

one to compute the angular rates as a function of the spacecraft mass properties and applied torques.

Euler's equation for general rigid-body dynamic motion is as follows:

h=T-_x

where

h angular momentum, ft-lbf-sec

_-_ applied torque, fblbf

_" spacecraft angular rate vector, rad/sec
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Becauseh = IMI_, where IMp is a constant matrix, Euler's equation can be expressed as

IMI_"_= _"_- _'_ x (IM#O-_

Both sides of the equation can then be premultiplied by (IMp) -1 tO obtain the rate equation

IMp{T - _ x (IM#O-_}

Expanding gives

_., Co_. = I_. Iv I_¢ L. - 0% x Ixv I v ly z u_.

(,., 1,j

The sum of all torques, both disturbance and control, acting on the spacecraft _'_ is defined as

_-.¢

where Xdim_ are disturbance tOrques acting on the spacecraft:

T_ = TGG + + lax + + Talo_h

and _r_vl are torques produced by the attitude control system and the axial thrusters:

-.-p ...p _ --p

Tconlro I = TRC S + TRW + TT

The angular rates are then found by integrating the dynamic equation of motion as follows:

= +

where _0 is the initial angular rote vector.
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A typical plot of attitude rate versus time for the COLD-SAT spacecraft over approximately one

orbit, showing x, y, and z components, is given in figure 3.9. This figure is discussed in more detail
in section 3.7.1. I.

3.4 Spacecraft Attitude Computation

The spacecraft attitude represents the orientation of the spacecraft axes (x, y, and z) with respect to

the inertial (TOD) frame (X, Y, and Z). This orientation can be conveniently specified in terms of a

quaternion, which represents the rotation required to transform the TOD axes to be coincident with the

spacecraft axes. The equation describing the time evolution of the quaternion is a first-order vector

differential equation that specifies the rate of change of the attitude quaternion in terms of the

spacecraft angular rates and the instantaneous spacecraft attitude as follows:

where M_ is a time-varying, skew-symmetric matrix formed from the spacecraft angular rates as
follows:

M g$

% - 0x 0

and

are the angular body rates about the spacecraft x, y,

" 1
!toxf

and z axes, respectively, and

q(O)

q (t>

q(2>

q(3>.

"..I.

is the attitude quaternion. The quantity q is the attitude quatemion rate, which is integrated to obtain

the attitude quatemion at any time t.
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whereq0 is the initial attitude.

3.5 Attitude Error Computation

The attitude error is a measure of the difference between the spacecraft's actual attitude _ and the

desired attitude computed by the attitude model/_ (see section 2.6). It is expressed in terms of angles

about the spacecraft x, y, and z axes, which are denoted 0x, 0y, and Or respectively. The error
quatemion (which represents the transformation between the desired spacecraft axes and the actual

spacecraft axes) is the product of the conjugate of the actual spacecraft attitude quatemion and the

desired attitude quaternion.

The three-axis attitude error is defined as

where

and

I0] r <t>

0 x [eqerr

_= Oy = [eqm._>

e - -2_ for4) # 0
sin _b

= -2 for 4_ = 0

cos-i _(0)4_= qe=

Angle 4_must be in the first or fourth quadrant, so that if (4_ > _/2) then let _ = 4_- n.

A typical plot of attitude error versus time for the COLD-SAT spacecraft over approximately one
orbit, showing x, y, and z components, is given in figure 3.10. This figure is discussed in more detail
in section 3.7.1.1.
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3.6 Attitude Determination System and Error and Rate Quantization

For the purposes of this model the attitude determination system is assumed to provide perfect

knowledge of the actual spacecraft attitude errors and attitude rates. For COLD-SAT the actual

attitude determination system consists of rate-integrating gyros, which are updated by information from

redundant Sun sensors and horizon sensors. These systems, and any errors that they may introduce

into knowledge of the attitude errors and rates, are not included in the COLD-SAT dynamic model.

However, the effect of digital quantization of both the attitude errors and rates is included in the

simulation (although all floating-point numbers stored in a digital computer are quantized, the

quantization discussed in this section is many orders of magnitude "coarser" than that encountered

with a 64-bit word length and is meant to represent that found on a spacecraft computer). For

COLD-SAT the following values are used:

(I) Attitude-error quantization, 1.43x 10 -4 deg/step

(2) Attitude-rate quantization, 1.43x 10-4 deg/sec-step

These values were chosen to be consistent with the numerical accuracy of the spacecraft computer
selected for COLD-SAT.

3.7 Attitude Control System Algorithms

3.7.1 RCS Thruster Control Algorithm

RCS thrusters can have one of two possible command states: full on or full off. The decision to

fire a given thruster is determined by comparing, for each of the three axes, the spacecraft attitude

errors and angular rates against a set of switchlines on the phase plane (0, 0). Depending on the

results of these comparisons, a table lookup is implemented to determine which thrusters, if any, need

to be commanded "on" in order to produce the required corrective torques.

3.7.1.1 Switchline controLmReaction control systems are commonly controlled by means of

switchlines. For COLD-SAT the switchline configuration used consists of a pair of parallel straight-

line segments plotted on the state plane of attitude rate versus attitude error that divide the plane into
three control regions. One of the switchlines intercepts the ordinate (attitude-rate axis) at a positive

attitude rate; the other intercepts it at a negative attitude rate. Both have a negative slope and

corresponding segments have equal slopes. One switchline crosses the abscissa (attitude-error axis) at

the maximum allowable positive attitude error, the other crosses the abscissa at the maximum

allowable negative attitude error. The slopes and intercepts of the switchlines for a given axis are

computed from the RCS-produced maximum acceleration and spacecraft moment of inertia about that
axis.

A typical set of switchlines, such as those used for COLD-SAT, is shown in figure 3.11. The

switchlines divide the (0, 0) plane into three control regions: a zero-torque region in the vicinity of

the origin, a negative-torque region above and to the right of the right switchline, and a positive-torque

region below and to the left of the left switchline. This scheme is implemented for each of the three

spacecraft axes.

A typical phase-plane plot of the z-component of attitude rate versus attitude error is given in

figure 3.12 for approximately one cycle (-65 rain). The presence of the switchlines is clearly evident
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on theright and left sides of this figure. The regions A, B, and C are marked as in figures 3.9

and 3.10. As shown in figures 3.9 and 3.10 the primary attitudinal activity occurs about the z axis

because the dominant disturbance torque (in the absence of axial thrust) is the gravity-gradient torque,

which exists predominantly about the z axis. Recall that this torque is sinusoidal with a period of

one-half the orbit period. Thus, when the gravity-gradient torque is positive, it produces a positive
angular acceleration about the z axis, which causes both the attitude error and the attitude rate to

increase (region A in figs. 3.9, 3.10, and 3.12). This continues until an RCS switehline is reached.

When the switchline is crossed, the appropriate RCS thrusters are fired, quickly reducing the attitude

rate to a very small value. The thrusters are fired about five times per minute, with thrust duration of

0.2 sec (tmin on) per firing, to oppose the gravity-gradient torque (region B in figs. 3.9, 3.10, and 3.12).

The phase trajectory hovers around the 1° (0 rev/day) point until the gravity-gradient torque becomes

negative. The spacecraft then experiences an angular acceleration in the opposite direction toward the

opposite switchline (region (2) until that switchline is crossed and the appropriate RCS thrusters are
fLred. This limit-cycle behavior continues indefinitely as long as there is no axial thrust.

3. 7.1.2 Computing swttchltnes.--A switchline is specified by means of a slope and an intercept

with the attitude-rate axis. The slope and the intercept are chosen so that a positive or negative

attitude rate outside the "zero torque" region will result in a continuous RCS thruster firing that will

reduce this attitude rate to zero along a parabolic trajectory in the state plane. Consequently, the slope

and intercept for a given switchline are functions of the moment of inertia and the steady-state RCS
torque about that axis.

For a given maximum-attitude-error specification, steady-state RCS torque, and moment of inertia

for each axis, the switchlines for each control axis are computed as follows:

o(i --
li

(Lintc_)i = + _az(Oi)ma x

where i = x, y, z, and

¢i magnitude of steady-state, RCS-produced torque about ith axis

Ii moment of inertia about ith axis from mass properties matrix

a i resulting steady-state angular acceleration about ith axis

(0i)ma x magnitude of maximum allowable attitude error about ith axis

3. 7.1.3 Thruster commanding.--In the COLD-SAT model the decision of which thrusters to fire

proceeds in two steps. First, the attitude error and the attitude rate are compared against the

switchlines to determine the "required torque region" (i.e., either positive, negative, or zero, as
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discussedin section 3.7.1.1). This is done for each spacecraft axis. Next, the model searches through
a thruster control table to determine which thrusters are to be turned on. The thruster control table is

created by the user and reflects the physical arrangement of control thrusters. Table 3.6 is the thruster

control table used for the COLD-SAT spacecraft. For example, if the attitude error and attitude rate

about the x axis indicate a point on the x switchline plot in the positive-torque region while the

attitude error and attitude rate about the y axis give rise to a point on the y switchline plot in the

zero-torque region and the attitude error and attitude rate about the z axis indicate a point on the

z switchline plot in the positive-torque region, this combination corresponds to the eleventh line in

table 3.6. Therefore, for this case thrusters 7, 8, 11, and 12 are fired until there is a change of torque

region on one or more of the three axes.

3.7.2 Gimballed Thruster Control Algorithm

A linearized, small-angle, block diagram representation of the gimballed thruster and the spacecraft

rotational dynamics is shown in figure 3.13. This representation is reasonably accurate for gimbal

angles as large as about 20 ° and thus can be utilized for the purposes of designing the control law. It

should be emphasized, however, that the actual model simulates the complete nonlinear dynamics of

the gimbal mechanism, including the fact that the two gimbal angles are not completely independent

(because one gimbal mechanism is mounted on the other).

A control law was designed to command the gimballed thruster based upon the spacecraft attitude-

error and attitude-rate vectors. The control law should meet the following goals:

(1) The control law must result in a stable closed-loop system for all expected spacecraft

perturbations.

(2) The control law must result in a reasonably fast transient response, with a time to first peak of

approximately 10 to 15 rain.

(3) The control law should not result in excessive overshoot or oscillation.

(4) The control law must result in acceptable operation for all expected thrust levels.

The following should be noted concerning the system to be controlled:

(1) The open-loop system has two poles at the origin (two integrations) as a result of the spacecraft

dynamics. Any proportional control scheme acting upon the attitude error will result in closed-loop

poles in the right-half s plane, and thus an unstable system will result.

(2) An integration in the forward loop is required to have zero steady-state error between the

attitude error and the gimbal angle. The system as it is, with no integration in the forward path, will

require a nonzero steady-state attitude error in order to drive the gimbal angle to a nonzero value.

Because a zero steady-state attitude error is desired, the controller must have one integration (i.e., a

pole at the origin of the s plane).

(3) This additional integration in the forward path results in three poles at the origin and thus in an

even more unstable system.
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Thefollowingapproachisusedinorderto solve this problem.

(1) If an additional attitude-rote feedback loop is added, one of the poles at the origin is moved into

the left-half s plane.

(2) An additional controller zero at some point in the left-half plane near the origin will cause the

closed-loop root locus to circle about this zero, so that the remaining two closed-loop poles will move

into the left-half s plane for increasing controller gain. A finite zero and integration can be provided

by a proportional-integral (P-I) control law.

(3) Thus, the control law should be a P-I scheme acting on the attitude error, along with a constant

attitude-rote feedback. Root locus analysis of the system indicates that the following is a suitable
control law:

C(s)= 2.5(s+ 0.0037) = 2.5 + 0.00925
$ $

Krate= -400

Note that this control law is not necessarily optimal but will result in acceptable response for all

expected conditions.

3.7.3 Reaction Wheel Control Algorithm

The control law used for the reaction wheel is a proportional law that acts on the attitude error
about the z axis and gives the voltage applied to the reaction wheel drive motor:.

where

Kp proportional control constant, 300 V/rad

0ez z component of spacecraft attitude error (see section 3.5), tad
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TABLE 3.1--STEADY-STATE THRUST VECTORS FOR

COLD-SAT RCS THRUSTERS

Thruster

1
2a

3

4"

5

6*

7

8m

9

I0

II

12

Thrust vector, including I o misalignments, lbf
,=

x componem y component z component

+0.06 cos l ° +0.06 sin I° 0
-0.06 cos 1°

+0.06 cos l °

-0.06 cos 1°

+0.06 cos I °
-0.06 cos 1°

*0.06 cos 1_

-0.06 cos I °

+0.06 sin 1° -0.06 cos 1°
+0.06 cos I°

-'0.06 cos 1°
+0.06 cos 1°

L
+0.06 sin [°

SFor an uncoupled RCS system, thrusters 2, 4, 6, and 8 are
deleted.

TABLE 3.2.mCOLD-SAT RCS

THRUSTER COORDINATES

Thruster

1
2
3

4
5

6
7
8
9

lO
11

12

Thruster coordinates in

spacecraft system,

X' y' z'

0 0 -48

+286.910 1 +20+48
+286.91 -20

0 +48 0

+286.910 -20-48 [
•"286.91 +20

0 0 -48

+48

-48
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TABLE 3.3.--RCS TORQUES AND FORCES FOR STEADY-STATE COUPLED SYSTEM

WITH MISALIGNMENT

Pair RCS thruster

l
2*

3

4"

5

6*

7
8"
9

10

11
12

Aboutx axis

-2.88

-2.88
+2.88

÷2.88

Steady-state torque,
in.-Ibf

About y axis

-2.88
-1.20
+2.88

+1.20

'For uncoupled

About z axis

-2.88
-1.20
+2.88
+1.20
+5.13

-5.13
+5.13
-5.13

Alongx axis

Translational force,
lbf

RCS system, thrusters 2, 4, 6, and 8 are deleted.

+0.06

-.06

+.06

--.06

4..06
-.06

4..06
-.06

Alon8 y axis

-0.06
+.0(5
--.06

+.06

Along z axis

TABLE 3.4.--STEADY-STATE RCS TORQUES WITH !° ANGULAR MISALIGNMENTS

[Boldface type indicates desired torque produced; normal type indicates misalignment torque.]

Pair RCS
thruster

1 I
2*

2 3
4"

3 5

6*

4 7

8"
5 9

10
6 11

12

eFor uncoupled

Steady-state torque, Translational force,
in.-lbf Ibf

About x axis About y axis About z axis Along x axis Along y axis Along z axis

+0.0502629

-.0209429
-.0502629

+.0209429

+ .0502629

-.0209429

-.0502629
+.0209429

-2.879$6
-2.879_

+2.87956

-2.879_
-1.199_
+2.87m
+1.19982

+.0895309
-.210895
+.0895309

- .210895

-.0502629
+.0502629
+.0502629
- .05O2629

-0.0895309
+.210895
-.08953O9
+.210895

-2.879_
-I.19'JM2
+2.879_
+I.IMM2
+$.129_
-5.12922
-,aJ.129n
-$.1_

+0.O599991
-.0599991
+.0599991
-.0599991
+.0599991
-.0599991
+ .0599991
-.0599991
+.0010471

+0.0010471

0

[
-,0599991

+,0599991
-.0599991
+.0599991

0

L
+0.0010471

L
0

l
RCS system tla'usters 2, 4, 6, and 8 are deleted.

Thruster

state

2

-I

TABLE 3.5.--RCS THRUSTER STATES

Description Value of Stma

Thruster off

Thruster in startup transient

Thruster full on
Thruster in shutdown transient

Strum = 0
0<_<I,

Sums increasing linearly
Strum-- I
0< Smm< I,

Sinm decreasing linearly
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TABLE 3.6.--RCS THRUSTER CONTROL TABLE

Torque region
(from switchline

plots)

x y z 1 2 3 4
axis axis axis

0 0 0
0 0 +

0 0 -
0 + 0 On On
0 + + On On
0 + - On On
0 - 0 On On
0 - + On On

0 - - On On

+ 0 0

+ 0 +

+ 0 -

+ + 0 On On
+ + + On On
+ + On On

+ - 0 On On
+ + On On
+ - - On On

- 0 0

- 0 +

- 0

- + 0 On On

- + + On On

- + On On
- 0 On on

- + On On

- - On On

Thruster

5 6 7 8 9 10 ll 12

On On

On On

On On
On On

on On

On On

On

On On

On
On On

On

On On

On
On On

on

On On

On

On On

0n

On

On

On On

On On On
On On
On on

On On On

On On

On on
On On On

On On

On

On

On

On
On
on

On

On

On

On

On
On
On
On
On
On
On
On
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Figure 3.1 .--Typical plot of gravity-gradient torque versus time
for COLD-SAT spacecraft. (Orbit pedod, 105 rain.)
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Figure 3.2.--Typical magnetic torque plot. (Spacecraft dipole moment
aligned with x axis.)
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Figure 3.3.--Typical aerodynamic drag torque. (Apparent dpple is
due to the fact that atmospheric density Is computed at intervals
of I minute to reduce CPU time.)
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Figure 3.5.--Typical solar pressure torque plot.
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Figure 3.7.--RCS thruster location for COLD-SAT spacecraft. (For an uncoupled system the front thruster ring is deleted.)
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Rgure 3.8.--Typical RCS thruster pulse, including transients.
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Gimballed thruster dynamics

Quantlzatlon/ Second order-
saturation dynamics Saturation:

Thruster _ = _ , I
command: 0.07815 Natural frequency

: deg/step -0.07842 rad/sec
,' Damping, 0.7071

Axial thrust/ Spacecraft mass Spacecraft rotational
CG offset properties dynamics

GImb_ CGoffset Space-
angle, torque, acceleration, ', craft
_p(t) _r(t) a(t) angular ;attitude

rote, ¢o(t) i error, 8(t)

ATVC control law

Rate
feedback

+

A/D quantization

0.000143
deg/stepsec

ProporUonal-lntegrel
c_tr_ler A/D quantlzatlon

2.5(s+0.0037)s _--'- :

0.000143
deg/step-sec .

Figure 3.13.--GlmbaJled thruster control loop 01nearlzKI, one axis).
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4.0 Slosh Model

One of the major design issues of the COLD-SAT spacecraft was the effect of fluid slosh on spacecraft

dynamic stability and attitude control system performance because of the large mass of liquid hydrogen

onboard. Therefore, one of the goals of the COLD--SAT dynamic model was to develop a slosh model

that would approximate slosh with sufficient accuracy to permit the torques produced on the spacecraft

by slosh to be evaluated for the conditions that the COLD-SAT spacecraft was expected to encounter.

An equivalent mechanical model is used to represent the fluid in the experiment tanks. This model

consists of two independent linear spring-mass-dashpot (SMD) systems per tank: one coupled to the

spacecraft y axis rotational dynamics and the other to the z axis rotational dynamics. The equivalent
mechanical model used for slosh is shown in figure 4.1.

4.1 Computation of Equivalent Mechanical Model Parameters From

Physical Parameters

Two orthogonal mechanical SMD systems are used to represent fluid slosh; each is attached to the

tank wall so that the equilibrium, or null, position of the sloshing mass is on the tank centerline. If

the proper values of spring constant, mass, damping, and distance below the free surface are selected,

the mechanical model's dynamic behavior will under most conditions approximate that of the actual

sloshing fluid in terms of such externally observable characteristics as reaction force produced on the

tank wall, slosh frequency, and amplitude. This section is concerned with determining these mechani-

cal model quantities in terms of actual physical properties, such as tank dimensions, fluid properties,
fill level, and local acceleration, so that the dynamic behavior of the mechanical model will best

approximate the actual sloshing fluid (ref. 6).

Cylindrical geometry is assumed for all tanks. Other assumptions are simplifying assumptions for
the slosh model:

(1) Only the fundamental slosh frequency is considered.

(2) Sloshes in pitch and yaw are assumed independent.

(3) Bare, smooth tanks are used.

(4) Slosh can be modeled in any of the three tanks or any combination thereof.

All parameters are computed at the start of the simulation only and thus are assumed not to change
significantly during the course of the simulation.

The equivalent spring constant, Ksl (in pounds force per foot), for each tank is computed as follows:

where

Kst = m r nh 3.68 + AKst(ax,h,d )

m T total mass of liquid hydrogen in tank, (1/4)XPH2d2h, Ibm

PH2 density of liquid hydrogen, lbm/ft 3
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a x

h

f

d

AKst(ax,h,d)

Xtank

The mass of the

x component of spacecraft linear acceleration produced by axial thrust (FT)xlms/C,

ft/sec 2 (For the purposes of the slosh model only, other accelerations in the x

direction, as well as y-directed and z-directed accelerations, are neglected.)

nonsloshing height of fluid in tank, _ ft

fill level of tank, percent

diameter of tank, ft

correction factor for low acceleration levels, slug/sec 2 or lbf/ft (For COLD--SAT,

this term is essentially zero for the three axial-thrust-induced, nonzero acceleration

levels and is only significant for simulation of slosh under zero-acceleration condi-

tions. This term cannot be computed analytically and is computed in the model by

interpolating actual experimental data given in reference 7.)

height (i.e., x-axis dimension) of tank, ft

equivalent SMD system, msl (in pounds mass), is computed as follows:

The distance of the equivalent SMD system below the free surface, Qst (in feet), which causes the

SMD system dynamic behavior to best approximate that of the fluid, is given by

tsl = ._d tanh 3.68h
3.68 d

The actual distance of the sloshing mass from the spacecraft CG, DCG (in feet), is given by

= Xmk + h - ta

where xtank base is the x coordinate of the tank bottom (in feet).

For local acceleration levels above zero gravity, the damping ratio of the SMD system, _sl

(dimensionless), is estimated as follows:

_d) -°.75 -0.25
_sl a _4"98 v0.5 _ ax for bare tank, a x • 0

21r

where

V

a x

d

kinematic viscosity of liquid hydrogen, 0.00197 cm2/sec

linear acceleration in x direction, cm/sec 2

diameter of tank, em
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Note that the value of damping given by this expression becomes infinite as local acceleration

approaches zero. For values of ax less than I lag, it is assumed that _ = 10-6.

The damping coefficient, Bs! (in pounds force-seconds per foot) for the tank, is used to express

damping in the slosh dynamical equations given in section 4.3. It is related to the damping ratio as
follows:

Bsl = 2_sl tOn,slms! = 2_sl

where _n,stisthesloshnaturalfrequency(inradiansper second),_kst/msl .

4.2 Effect of Spacecraft Rotational Motion and Slosh-Model Tank Motion

The slosh model consists of two independent SMD systems; each system is separately coupled to

the spacecraft y-axis and z-axis rotational dynamics. Each SMD system is forced by the inertial
angular displacement (with respect to some arbitrary reference) and the angular rotation about the

corresponding spacecraft body axis. In ram, the reaction force produced by each SMD system

produces a torque about the corresponding spacecraft axis. Because the slosh model is a translational

mechanical system and not a torsional one, it is necessary to develop the relationships between the

rotational motion of the spacecraft and the corresponding motion of the tank walls, which forces the

slosh model, as well as the relationship between the reaction forces produced on the tank walls and the

resulting torque produced on the spacecraft about its CG. The coupling between the spacecraft angular

motion and the slosh model is given in this section. The coupling between the slosh model and the
resultant torque produced on the spacecraft is given in section 4.4.

4.2.1 Displacement of Tank Wall Due to Spacecraft Rotation

As the spacecraft rotates about the y or z axis, the null point of the sloshing mass moves along an

arc of radius DCG. If the angular displacement of the spacecraft is small, this arc can be approximated
by a straight line tangent to this arc at the null point. Thus, the tank wall is considered to move in a

straight line as the spacecraft rotates, as given by the following relations:

where

Dcc

Ytw,Ztw

y, Oz

y-Axis slosh

y,w= Dc 0y

_-Axisslosh

Ztw ffi DcGO z

distance of slosh-mass null point from spacecraft CG, ft

y and z components, respectively, of linear displacement of null point (and tank walls)

with respect to inertial space due to spacecraft rotation, ft

y and z components, respectively, of spacecraft rotation about its CG with respect to

some arbitrary reference, rad
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Theangles0y and 0c are extracted from the spacecraft attitude quaternion in a manner similar to the
extraction of attitude error discussed in section 3.5. The attitude quatemion at the beginning of the

simulation is used as the attitude reference. The Euler rotation angle extracted from the quatemion

will always be in the range 0 ° to 180 °, which leads to the restriction that slosh cannot be simulated for

non-inertially-fixed attitudes: A spacecraft rotation of more than 180 °, in any direction, from the

initial attitude would cause a discontinuity in the computed values of Ytw, ztw, or both, which would
cause the slosh model to produce incorrect results. The relationship between the Euler rotation axis,

the Euler rotation angle, and the quatemions is given in appendix B.

The computation of the angles 0y and 0 z from the spacecraft attitude quaternion is given in equation
form as follows: The slosh rotation quatemion is computed as

q'slosh = q"c *q'0

where

actual spacecraft attitude quaternion

q'0 spacecraft attitude quatemion at start of simulation (reference attitude)

The slosh rotation angles are given by

y-Axis slosh g-Axis slosh

Oy = gqslosh 0z = eqslosh

where

_(o)
4_ = cos-I qslosh

4.2.2 Velocity of Tank Wall Due to Spacecraft Angular Rates

The slosh SMD system is also forced by the inertial velocity of the tank wall, which is related to

the spacecraft angular rates about the y and z axes. As was the case for the displacement computation,

this velocity is actually the tangential velocity at the null point of the sloshing mass. It can be

computed as follows:

where

y-Axisslosh g-Axisslosh

_ = DCGO_y _'tw = DcGO_z

y and Z components, respectively, of tangential velocity of tank wall, ft/sec

attitude rates about spacecraft y and z axes, respectively, rad/sec
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4.3 Slosh-Model Implementation

An SMD slosh representation was chosen because of its simplicity and because, unlike a pendulum

analogy, it is valid at all acceleration levels down to zero. Because of the COLD-SAT spacecraft
geometry and the orientation of the axial thrust vector, it can validly be assumed that slosh about the

spacecraft x axis is negligible; thus, the fundamental slosh frequency can be modeled by two indepen-

dent SMD systems that are coupled to the spacecraft rotational dynamics about the y and z axes, as

was previously discussed. It is assumed that the slosh harmonics beyond the fundamental are

insignificant and that there is no coupling between the two SMD systems themselves (although
coupling exists through the rotation model). Both are valid assumptions if the system is not near
resonance.

The mechanical equivalent system, shown inside one tank relative to the fluid free surface, is illustrated

in figure 4.1. All tanks are assumed to be cylindrical. The parameters msl, Ksl, Bsl , and _s! are

computed from the fluid density, fill level, tank diameter, and linear acceleration (produced by the

axial thrusters), as was discussed in section 4.1. Slosh is assumed to significantly affect the spacecraft
rotational dynamics only; the effect on the spacecraft trajectory is assumed to be negligible and is not

fed back to the translation model although lateral motion of the spacecraft is accounted for in the slosh

model itself. Refer to figure 1.4 for a block diagram representation of the slosh model.

The relative displacement of the sloshing mass for tank i with respect to its null point is computed
as follows:

where

y-Axis slosh

Yrel = Ytw - Ysi + YSIC

g-Axis slosh

EreI = Etw - Zsi + ZS/C

Ysi,Zsi y and z components, respectively, of displacement of sloshing mass with respect to

inertial space for tank, ft (This is computed by integrating the accelerations resulting
from forces applied to the sloshing masses.)

YS/C ' ZS/C y and z components, respectively, of translational displacement of spacecraft due to the

effects of slosh, ft (This displacement is not fed back to the translation model.)

The relative velocity of the slosh mass with respect to the tank wall is computed as follows:

where

y-Axis slosh

= - Ysi + Ys/c

g-Axis slosh

Zrel = _tw - _'si + Zs/c

Ysi,_si

Ys/c, s/c

y and z components, respectively, of velocity of sloshing mass with respect to inertial

space, ft/sec

y and z components, respectively, of translational velocity of spacecraft due to effects

of slosh, ft/sec (This velocity is not fed back to the translation model.)
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The force vector acting on the slosh mass, Fsl (in pounds force), is computed as follows.

negative of this force vector produces a disturbance torque on the spacecraft, as discussed in

section 4.4, and a translational motion of the spacecraft, which is discussed hero.

The

]F-st = Yrel + BdYrel

[KaZra + aa_r_tJ

Integrating the acceleration produced by this force yields the velocity and position of this mass with

respect to inertial space:

y-Axis slosh

msl Y

Ya = Ya(t)dT ÷ Ya(0)

:[-Axis slosh

£,Zst= _:st('r)dr + za(O)

The translational acceleration acting on the spacecraft due to slosh in tank i is computed as follows:

y-Axis slosh

F 1

(YS/C)/ = - [(F_')ily

ms/c - E (ma)j
J

:[-Axis slosh

(_c)i = -
(Fd)i]z

- _" (msl)iams/C

J

The translational velocities and displacements of the spacecraft due to slosh are computed by

integrating these accelerations as shown hero:

and

y-Axis slosh g-Axis slosh

Ys/c )'s/c('r)dr Zs/c Zs/c (r) dr
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4.4 Disturbance Torque Produced on Spacecraft by Slosh

The reaction force on the tank wall Fsl was computed in section 4.3. This is the sum of the forces

produced by the spring and the dashpot; it translates into a torque on the spacecraft. This is the slosh

torque, which was discussed in section 3.2.2.

A typical plot of slosh torque (resulting from slosh in all three tanks) for the COLD-SAT spacecraft
for approximately one orbit, showing x, y, and z components, is given in figure 4.2.

Typical tank

J

I_-- Fluid
I

I

I tank

I

I

I

i
7

/

-'Tank

centedins
x tank bus

• Null point (i.e.,location of slosh

mess with unstretched spring; this

corresponds to tank centedine)

Figure 4.1 .--Mechanical equivalent of slosh model.
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Figure 4.2.--Typical slosh torque (slosh in all three tanks).
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5.0 Microgravity Accelerations in Experiment Environment

While on orbit the COLD-SAT spacecraft was to perform a series of experiments to investigate the

behavior of cryogenic fluids in a near-zero-gravity environment. For some of these experiments it was

desired to control both the magnitude and direction of the accelerations acting on the spacecraft,
particularly at the fluid surface, as precisely as possible. In addition, it was desired that the

acceleration level remain constant throughout the course of the experiment. Three levels of

acceleration were desired. The acceleration was to be directed along the positive spacecraft x axis,

with zero acceleration along the y and z axes. Axial thrusters were provided on the aft end of the

spacecraft for this purpose. The thrusters were sized to provide the following levels of thrust: 0.04,

0.16, and 0.52 lbf. The acceleration levels generated by these thrust levels will depend upon the

spacecraft mass at the time that the thrusters are operating. With a spacecraft nominal mass of

6000 Ibm, the three resulting acceleration levels are 6.7, 26.7, and 86.7 ttg directed along the +x axis.

These desired acceleration conditions are not obtainable in practice because a number of factors act

to alter the desired acceleration. These undesired accelerations are termed parasitic accelerations and
are caused by the following conditions:

(1) Axial thruster miselignment: If the thrust vector generated by the fixed axial thrusters is not

parallel with the spacecraft x axis, undesired components of acceleration in the y and z directions will
be produced.

(2) Gimballed thruster:. The gimballing action of the gimballed thruster causes the thrust vector to

change in direction, thereby creating components of thrust in the spacecraft y and z directions and

causing the x component of thrust to vary in magnitude.

(3) Spacecraft mass changes: During the course of the mission the spacecraft mass decreases owing
to consumption of hydrazine and overboard loss of experiment fluids. Thus, for axial thrusters with

constant thrust level the acceleration level gradually increases throughout the mission.

(4) Aerodynamic drag: Aerodynamic drag modifies the spacecraft acceleration. The direction of

this disturbance acceleration, in body coordinates, depends upon the spacecraft attitude selected and the
spacecraft orbit.

(5) Spacecraft angular accelerations: Angular accelerations acting on the spacecraft are produced by
disturbance torques (including slosh) and the action of the attitude control system. Linear

accelerations result that are tangentially directed with respect to the CG.

(6) Spacecraft angular rotation: The body rates of the spacecraft produce linear accelerations that

are radially directed with respect to the CG.

(7) Gravity gradient: A gravity-gradient acceleration field is produced by the nonuniformity of the
gravitational field throughout the spacecraft body.

(8) Uncoupled RCS thrusters: The firing of an uncoupled control thruster, whose function is to

produce a control torque, will cause linear accelerations of the spacecraft body. For COLD-SAT these

accelerations are always directed in the +x direction.
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(9)Angularmisalignment of RCS thrusters: If the thrust vectors produced by the RCS are not

parallel to the principal spacecraft axes because of thruster misalignment, a parasitic linear acceleration

will be produced in the direction of misalignment when an RCS thruster is fired.

To gain an understanding of these microgravity disturbances and to evaluate the effect of various

attitude control systems on the microgravity environment, the rotation model was expanded to include

the computation of these accelerations at various user-selectable points throughout the spacecraft. A

qualitative assessment of these accelerations was obtained by plotting the computed acceleration levels,

typically for one complete orbit. A typical plot of the microgravity environment for a point at the

front of the supply tank, showing x, y, and z components, is given in figure 5.1 for approximately one

orbit. The RCS thruster firings are clearly evident, superimposed on the background gravity-gradient

acceleration. Comparison with figures 3.9, 3.10, and 3.12 reflects a correlation between the

microgravity environment and the location in the attitude-error/attitude-rate phase plane.

To obtain a quantitative measure of the degree to which the total accelerations at the selected points

deviate from the desired acceleration levels, two parameters were defined as follows:

(1) The maximum instantaneous deviation (MID)

(2) The root-mean-square deviation (RMSD)

Precise definitions of these parameters are provided in section 5.5. It was found that these measures

of microgravity deviation from the ideal acceleration requirements correlated well with the visual

impressions created by the graphical representation. For the plot shown in figure 5.1 the maximum

instantaneous deviation is 19.35 lag along the x axis, 6.916 _g along the y axis, and 8.151 lag along

the z axis. The RMSD is 1.181 lag along the x axis, 0.7282 ttg along the y axis, and 0.2647 lag along
the z axis.

In the model the linear accelerations (conditions (1) to (4)) are computed in the translation model,

and the remaining effects are computed in the rotation model. The acceleration level may be

computed at as many as 10 points. At each of the 10 points the components of the total acceleration

along the three body axes is computed.

The following subsections describe in detail the computation of the various components of the

microgravity disturbances. Also described are the computation of the MID and RMSD parameters.

5.1 Microgravity Acceleration Resulting From Spacecraft Linear
Acceleration

This component of microgravity acceleration resuRs from translational spacecraft acceleration,
which is produced by the fixed and gimballed axial thrusters, from aerodynamic drag, and from linear

forces produced by uncoupled and/or misaligned RCS thrusters: Of these, only the x component of
axial thrust produces a desired acceleration; the y and z components of axial thrust, as well as all of

the other causes indicated, produce parasitic accelerations. Computing this acceleration is simply a
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matter of converting the total external I accelerations acting on the spacecraft, which were computed

by the translation model, into microgravity units. This computation, in equation form, is as follows:

(6ext)s/c' _g

where (_t)s/c was given (in feet per second squared) in section 2.5. This acceleration is independent

of location within the spacecraft.

5.2 Microgravity Acceleration Resulting From Spacecraft Rotational

Dynamics and Gravity-Gradient Effects

The remaining three components of microgravity acceleration are unique in the sense that the

magnitudes and directions of these accelerations at a given point in the spacecraft are a function of the

coordinates of that point with respect to the CG. Therefore, it is necessary to define the location at

which the microgravity accelerations are to be computed. This is done by means of a vector from the

CG to the point of microgravity computation, denoted _, which is used in all of the acceleration

computations that follow. The microgravity accelerations discussed in this section are entirely
parasitic.

5.2.1 Angular-Rate-Induced Centrifugal Acceleration

Owing to centrifugal effects, spacecraft rotation about the CG produces a radially directed

acceleration that is a function of angular rates and relative distance from the CG. Because

COLD-SAT's attitude control scheme results in extremely low angular rates, this acceleration is

typically insignificant. However, it is included in the model for generality.

The centrifugal microgravity acceleration is computed as follows:

_._ (_._ _), ug

where

_'_ spacecraft angular rate vector, rad/sec

vector from CG to point of computation, ft

IBecause the spacecraft is in free fall, the gravitational acceleration does not affect the microgravity environment and thus is not

included in the computation.
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5.2.2Angular-Acceleration-InducedTangentialAcceleration

SpacecraftangularaccelerationaboutitsCGproducesa tangentially directed linear acceleration that

is a function of the distance from the CG and the spacecraft angular acceleration vector. This

acceleration is produced by all torques that act on the spacecraft, including both disturbance and

control torques. For COLD-SAT, because of the large magnitude of the RCS control torques with

respect to other torques acting on the spacecraft, this component of microgravity acceleration is

dominant when RCS thrusters are firing. This acceleration is predominantly in the form of large-

magnitude, short-duration pulses that correspond to RCS activity. This effect can be clearly seen in
figure 5.1.

The tangential microgravity acceleration is computed as follows:

where _-_the spacecraft angular acceleration vector (in radians per second squared).

5.2.3 Microgravity Acceleration Resulting From Gravity-Gradient Effects

Gravity-gradient microgravity acceleration results from the fact that (like the gravity-gradient

disturbance torque acting on the spacecraft rigid body) only the CG of the spacecraft is truly in free

fall and nowhere else inside the spacecraft does the orbital centrifugal acceleration (away from the

Earth) exactly balance the gravitational acceleration (toward the Earth). This results in a "gravity-
gradient field" that is zero at the CG and increases as one moves away from the CG. 2 The variation

of the field is different along the direction of the spacecraft position vector R than it is in the

remaining two orthogonal coordinate directions.

Computation of the gravity-gradient acceleration requires that the vector F_pbe transformed into the

local-horizon (LH) coordinate system. This system has its origin located at the spacecraft CG, with

the z axis in the direction of the zenith and the y axis perpendicular to the spacecraft orbit plane. The

x axis is chosen to form a right-handed system and will coincide with the velocity vector for a circular

orbit only.

The vector _ in spacecraft body coordinates is transformed into TOD coordinates (r-_o D by

means of vector transformation and by using the spacecraft actual attitude quaternion as follows:

i0]._ = ___

j
where q is the attitude quatemion.

2Note that the microgravity acceleration that is produced by the gravity-gradient field is in addition to the microgravity acceleration that

is caused by gravity-gradient-disturbance-torque-induced angular acceleration on the spacecrafi, as previously discussed.
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ThetransformationbetweenTODcoordinatesandLH coordinatesisnowderived. The LH system

can easily be defined in terms of previously defined base vectors (see section 2.6.3) as follows: The

LH z axis is the unit position vector _R" The LH y axis is a unit vector normal to the orbit plane,

-- _R x b-_, where _ is the unit velocity vector. The LH x axis is the crossproduct _/v x _R'

Thus, the transformation matrix from TOD to LH coordinates is

_OD-. LH] = [_'Nx _ J _J_R]

The vector @ can now be expressed in LH coordinates (r-_LH as

(r-'_LH = [TOD --* LH](f-_p)TOD

The microgravity acceleration vector due to gravity-gradient effects, denoted _C,G, is computed in LH
coordinates as follows:

where

R

PF_arth

(_GG)LH [32.175 [ R3 ] L-2rpZJLH

magnitude of spacecraft position vector, h

Earth gravitational constant, 1.4076469x 1016 ft3/sec2

The acceleration vector is now transformed to TOD coordinates (_GO)TOD and finally to spacecraft

body coordinates (rGO) as follows:

= [TOD( GG)TOD "* LHIT(_GG)LH

(_GG)TOD

5.3TotalMicrogravityAcceleration

The total microgravity acceleration is the vector sum of the four components:
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5.4 Plotting Total Acceleration

It is required to graphically plot the total microgravity acceleration, which is the sum of the

translational, gravity-gradient, centrifugal, and tangential accelerations as previously discussed. When

there is no RCS activity, the dominant torque acting on the spacecraft is the gravity-gradient torque,

and perhaps the reaction-wheel- and gimballed-thruster-produced torques if these systems are included

in the simulation. In any event the torques produced by these three entities are smooth curves that can

easily be plotted. However, if one or more RCS thrusters are fired, the torques produced by these

thrusters are by far the largest torques acting on the spacecraft for the duration of the thruster on-time.

But because this on-time is very short, typically with a value of tmin on (see section 3.2.3.2) or slightly

greater, the resulting tangential acceleration profile consists of very narrow pulses of large magnitude

whose width matches the thruster on-time. These pulses are too short in duration to plot in most cases

(typical spacing between plot points is on the order of 5 to 10 sec, whereas tmin on for COLD-SAT is
200 msec). In theory, the number of data points plotted could be increased so that the spacing

between points is on the order of 200 msec, but this would result in excessively large data files. A

better solution to this problem is to exaggerate the width of the RCS pulses (for plotting purposes

only) from their actual width of about 200 msec to several seconds so that the resulting plots will

faithfully illustrate the microgravity environment.

Because these short pulses occur only when an RCS thruster is fired, the algorithm implemented

simply checks the states of all RCS thrusters; when one or more RCS thruster is in a full-on state (i.e.,

it has passed the startup transient), the algorithm holds the value of microgravity acceleration

computed at this point (which is the maximum value) for time thold, which may be several seconds,

and allows the plotting program to catch at least one point at this maximum value. After thold seconds
have passed, the value of the stretched acceleration variable is again set to that computed by the

simulation. This results in pulses that are clearly visible on the plotted output. The value of thold is

selected so that thold • tinc, where tinc is the time between plotted points.

5.5 Computation of Microgravity Deviation Parameters

It is desirable to develop a numerical measure of how much the actual microgravity environment

deviates from the ideal microgravity acceleration for each point. Two vectors are defined for each
point where the microgravity environment is to be computed:

(1) Maximum instantaneous deviation (MID): This parameter represents the largest magnitude of
deviation of the actual acceleration from the desired acceleration for one orbit.

(2) Root-mean-square deviation (RMSD): This parameter represents an average deviation of the
actual acceleration from the desired value over one orbit.

The MID and RMS deviations are expressed as follows:

MID

max[sx(t ) -Sno m

= maX[$y(t)] , /ag, over one orbit
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RMSD" I _t

t J0

[Sx(T) - Snore]2

s,2tT)

S:(T)

1/2

dr , lag, over one orbit

where

Snom

(FT, x)nom

(ms/c)nom

nominal acceleration in +x direction (computed at beginning of simulation only),

(F T,x)nom/ (m s/c )nom

nominal thrust level (0.04, 0.16, or 0.52 lbf) in +x direction

nominalspacecraftmass, slug
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Figure 5.1 .--Typical mlcrogmvlty plot. (Point of computation
Is located on x axis st front of supply tank.)
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Appendix A
Notation and Constants

TABLE A.I.--NOTATION CONVENTIONS

Symbol Typical usage

X_v,_R

"_,_',_,inc.

v_,vrv_

-_stc

q

I

l,j

iT

i-I

IA _ BI

unit vector; subscript indicates which one (in this case, v subscript indicates
unit velocity vector, R subscript indicates unit position vector, etc.

unit vectors along coordinate axis as indicated by subscript

vector (in general, not unit vector)

x, y, and z components of vector

R, _ and 0 components of vector -# (spherical coordina_.s)

vector referenced to coordinate system other than one in which vector was

originally definnd (e.g., VSlc is spacecrat_ velocity vector expressed in
spacecraft coordinates; original definition of this vector was in TOD
coordinates)

quaternion

scalarpartof quaternionq

vectorpart(x,y,and z components,respectively)ofquaternion

three-axis attitude error (in strict mathematical seine, not a vector)

rectangular matrix

single element of matrix I (lth row, ._h column)

transpose of matrix i

inverse of square matrix I

time derivative (rate of change) of scalar, vector, and quaternion,
respectively

transformation matrix from coordinate system A to coordinate system B
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TABLE A.2.--FUNDAMENTAL PHYSICAL CONSTANTS

Symbol Name Value

;IBmh

J2

6

Mrumh

Po

Earth gravitational constant (product

of universal gravitational constant

and Ea_ mass)

Earth gravitational second zonal

harmonic coefficient

Earth gravitational third zonal

harmonic coefficient

Earth gravitational fourth zonal

htrmor_c coefficient

Earth equatorial radius

Solar radius (visible surface)

Earth-Sun distance (semimajor axis),

AU

Earth magnetic dipole strength

Magnetic permeability

1.4076469x 1016 fl3/sec2

3.986005 x 1014 m3/sec 2

1.0827x 10-3

-2.56x 10 -6

- 1.58_ 10 -6

20 925 656 fl

3443,920 n mi

6378.15 km

2.283436x 109 ft

4.908066_ I01! fl



Appendix B
Quaternion Algebra

Because quaternions are used throughout this model to represent spacecraft attitude, it is essential to

provide some background information on the mathematics of quaternions.

B.1 Introduction

A quaternion is an ordered quadruple that appears to be a complex number with an imaginary part

consisting of a three-element vector. Quaternions can be expressed in many different forms, but two

forms are of concern here. The unit-vector form is expressed as follows:

= q<0>+ q<:>f.+ q(2>T+ qo>g'

where _, j-', and k-' are unit vectors similar to those encountered in vector analysis. Alternatively, a

quatemion can be expressed in column-vector form as

q<0)

q O)

q (2)

g 0).

where q0 is called the scalar part and ql, q2, and '/3 make up the vector part. The column-vector form
is used throughout this document when referring to quaternions in general. However, the unit-vector

form is convenient when dealing with quaternion multiplication, as will be shown shortly.

A special type of quatemion is the unit quaternion. The unit quaternion simply satisfies the

property that

+ + + (3) = 1

Because many of the properties defined herein are only valid for unit quatemions, all quaternions used
in this model, unless otherwise indicated, are assumed to be unit quatemions.

B.2 Advantages of Quaternion Attitude Representation

A unit quaternion actually represents a single three-dimensional rotation of a given angle about a

given vector. Thus, a unit quaternion can be used to express a transformation between two different

coordinate systems and is used to represent the attitude of the spacecraft in the COLD-SAT dynamic
model.
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Alternativerepresentationsof spacecraftattitudearethe use of Eulor angles and the attitude matrix

(sometimes called a direction-cosine matrix). Eulor anglos represent three sequential two-dimensional

rotations to describe a rotation in three dimensions. The equations of motion for the Eulor anglo

representation contain nonlinear functions. Singularities occur for certain rotation anglos, making the

Euler anglo approach valid only for small-anglo rotations. The attitude matrix, on the other hand, has

linear equations of motion but requires integration of nine values per time stop, as opposed to three for

the Euler anglo representation. Another problem with the attitude matrix representation is the tendency

of the matrix to drift away from orthonormality because of numerical inaccuracies in the integration.

Restoration of orthonormality is a nontriviai procedure that requires many operations. The quaternion

representation suffers from none of the aforementioned problems. It requires only four integrations per

time stop, is valid for any rotation, and has no singularities anywhere in the equations of motion. The

only condition that must be maintained is normality of the quatemion, which is easily checked and
corrected.

B.3 Quaternion Mathematics

B.3.1 Addition

Quaternions are added together just like vectors or column matrices. If/_ and q are quaternions,

the quaternion sum is found as follows:

. °

p(O>

p(l>

p<2>

£ <3>.

• o

q(O)

q<l>

q<2>

.qO>.

p(O> + q(O>"

p(l) + q(l>

p<2> + q<2>

_0> + qO',

B3.2 Multiplication by Scalar

Quaternions can be multiplied by a scalar like vectors and matrices. If q" is a quaternion and a is a
scalar, then

7<0> aq(0> I

70> aqO>l
a ----

7 <2> aq <2>l

7 0). aq <3>j
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B.3:3QuaternionMultiplication

If/_ and _ are quaternions defined as

and

I.<O)

_p<l>

,p<2>

1_<3>
. .

= ,<o>+ p<2>T+

ia<t>

[0<2>

a<3>

= q<0> + q(l>_+ q<2>j-'+ q<3>_-*

where i-*,j-*,and k'* are unit vectors, multiplication of the quaternions F and q', denoted F * q', is

defined as follows by using the unit-vector representation.

(1) Multiply each element of/_ by each element of q', preserving the order of multiplication

(16 multiplications).

(2) Simplify the resulting terms by using the following rules. Note that this operation is not
commutative:

i*i = -1 j*j =-1 =-1

i*j = k = z =J

k*j = -i j*i = -k i*k = -j

Note the similarity to complex number multiplication and vector crossproduct.

B.3.4 Conjugation

If q" is a quaternion, the conjugate of q', denoted by q" c, is found by negating the vector part of the

quaternion q':
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i c, (0)

[_ q (1)
_c=

]_ q (2)

Note the similarity to the conjugation of a complex number.

B.3.S Inverse

The inverse of a quatemion _, another quatemion denoted by _'-1, satisfies the following property:

Ill

101

IOI

IOI

If q is a unit quatemion, then _--1 __ _'c (i.e., the inverse and conjugate of any unit quatemion are

equal.

B.3.6 Extraction of Rotation Angle and Rotation Vector

Because a quatomion represents a rotation of a given angle about a given vector, the rotation angle

0 and rotation vector i_ ffi [vx Vy vz] T that a given unit quatemion _ represents can be depicted as
follows:

. .

q(O)

q(l)

q¢2>

gO).

0
COS

2

vx sin_

Vy sin_

vz sin--O2

The rotation angle 0 is found from the scalar part of the quaternion. If 0 is restricted to two quad-

rants, there is a one-to-one correspondence between the quatemion and the rotation in space. If the

first and second quadrants (0 _ 0 _ 7r) are arbitrarily chosen, then 0 can be solved for. The rotation

vector is then easily determined from the vector part of the quatemion.
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B.3.7 Vector-Coordinate Transformations Using Quaternions

If _= Ivx vy Vz]r is a vector defined in TOD coordinates, _ = [w x wy wz]r is the same

vector expressed in spacecraft body coordinates, and q = --[q(0) q (1) q (2) q (3)J"T is the spacecraft

attitude quaternion, the vector-coordinate transformation from TOD to spacecraft body coordinates can

be expressed as

0
i

WXi_

Wy

W z

"q(°>l 0

_q(D I, vx

_q(2>I Vy

...q<a>Jv,.

q_

q(1)

q <2)

.q(3>.

This expression in compact form is

I:]- = (_9, --- ,_

L_'J

The inverse transformation from spacecraft body to TOD coordinates is

-0] r,l_ - __.l,_c
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Appendix C
Coordinate Systems

C.1 TOD System

The TOD (geocentric equatorial true equinox of date) coordinate system (denoted X, Y, and Z) is
a pseudo-inertial 3 right-handed Cartesian system with its origin situated at the center of the Earth.

The X-Y plane is coincident with the Earth's equatorial plane and the Z axis passes through the North

Pole. The X axis points in the direction of the vernal equinox (first point of Aries) on the date in

question. This coordinate system is illustrated in figure C.1. Vectors expressed in this system are

given the subscript TOD. This coordinate system is the basis for the translation model.

C.2 Spacecraft Body System

The spacecraft body coordinate system (denoted x, y, and z) is a right-handed Cartesian coordinate

system whose origin is defined as the instantaneous, actual CG point of the spacecraft. The x axis is
parallel to the long axis of the spacecraft, the positive direction being in the direction of the small

receiver tank. The y axis is defined to be parallel to the solar panel connecting struts, and the z axis is

in the direction opposite to the parabolic antenna. This coordinate system is not fixed with respect to
the spacecraft rigid body but moves with the CG location. This coordinate system is the basis for the

rotation model because all attitudinal motion of the spacecraft will occur about the CG. This system is
illustrated in figure C.2. Vectors expressed in this system are given the subscript S/C.

C.3 Alternative Spacecraft Body System

The alternative spacecraft body coordinate system (denoted x', y', and z') is a fight-handed

coordinate system similar to the spacecraft body system discussed previously. The x', y', and z' axes

point in the same directions, respectively, as the x, y, and z axes, but the origin of this coordinate

system is located at the intersection of the plane containing the back thrusters and the line perpen-

dicular to this plane that passes through the nominal spacecraft CG. Note that this system, unlike the

x, y, _:system, is fixed with respect to the spacecraft rigid body. It is thus convenient to use it to

specify the locations of thrusters, tanks, and other components that are fixed with respect to the
spacecraft rigid body. This system is illustrated in figure C.2.

C.4 Spacecraft Orbit Plane System

The spacecraft orbit plane (SCO) system is used in the initialization routine that converts a set of

user-specified orbital elements into an equivalent position and velocity vector. This system is briefly

mentioned in section 2.2 and defined as an Earth-centered, right-handed Cartesian coordinate system

that is fixed with respect to the perigee of the spacecraft orbit. The x-y plane of this system is
coincident with the spacecraft orbit plane, with the x axis passing through perigee of the orbit (if the

3pseudo-inertial refers to the fact that this coordinate system does move very slowly with respect to inertial space because of the

precession and nutation of the Earth's axis. However, over the proposed life of the COlD-SAT spacecraft, this movement is so slisht as to

be negligible. Therefore, for these purposes the TOD system can be considered to be an inertial frame.
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orbit is circular, the orientation of the x axis is arbitrary). The z axis is in the direction of the space-

craft angular momentum vector. Vectors expressed in this system are given the subscript SCO.

C.5 Earth Magnetic Field System

The Earth magnetic field coordinate system (denoted X',I#,Z ') is a right-handed Cartesian coordinate

system that is fixed with respect to the rotating Earth. The z axis of this system is defined as passing

through the Earth's north magnetic pole, and the x-y plane contains the magnetic equator, with the

x axis passing through the meridian of longitude in which the north magnetic pole lies. Vectors

expressed in this system are denoted with the subscript M. This system is used in computing the

magnetic torque.

The transformation from the true-of-date (TOD) system to the magnetic (M) system consists of two

successive Euler rotations. Starting with the TOD system, the first rotation is about the Z axis (i.e.,

the Earth's axis) by an angle/5, where/5 is the angle between the vernal equinox (X axis) and a vector

from the Earth's center through the point on the Earth's surface where the magnetic equator intersects

the meridian of longitude containing the north magnetic pole. This intermediate system is denoted M'.

The angle/5 is defined as follows:

/5 = a - GHA

where a is the longitude west of Greenwich of the north magnetic pole and GHA is the Greenwich

hour angle, the angle measured westward from the Greenwich meridian to the vernal equinox. The
Euler rotation matrix for this first rotation is

[TOD --. M'] = io.iin/5 cos

o 0

For the second Euler rotation the M' system is rotated about its y axis by angle [3 to form the M

system, where [3 is defined as 90 ° minus the latitude of the north magnetic pole. This second
transformation can be expressed as

[M' -, M] = [°o
Lsinl_ 0 cos[_J

Therefore, the complete transformation from TOD coordinates to magnetic coordinates is given by the

following matrix:
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[TOD -* M] =
Icos [_ cos 5 -cos [3 sin 5 -sin _|

G

0Jsin 8 cos _ 0

sin_ cos8 -sin _ sin _ cos

The values of a and 13vary somewhat over time as the Earth's magnetic poles move but are generally

known for a given date. The GHA is a simple function of the date and time:

GHA = GHA 0 + REattht

where

R_

i

Greenwich hour angle at start of simulation (found in Astronomical Almanac)

Earth rotation rate, deg/sec

simulation time, sec

C.6 Ecliptic Coordinate System

The ecliptic coordinate system is a heliocentric, right-handed Cartesian coordinate system whose

x-y plane is coincident with the plane of the ecliptic, whose x axis points in the direction of the first

point of Aries, and whose z axis is in the direction of the angular momentum vector of the Earth as it

revolves about the Sun. Vectors expressed in this system are given the subscript e. This system is

used in computing the desired spacecraft attitude for certain attitude options.

Equatorial plane

X (vernal equinox)

Figure C.1 .--TOD coordinate system.
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Figure C.2. ---Spacecraft body coordinate system.
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Appendix D
Implementation of Model

D.I Overview

The COLD-SAT dynamic model is implemented by using the EASY5 engineering analysis system.

EASY5 is an analysis and design tool for simulation and control systems that is published by Boeing

Computer Services. It incorporates the following features:

(1) The convenient block-diagram-based system modeling approach subdivides the model into

separate components that can be developed and tested independently.

(2) The transient solution of systems is described by linear or nonlinear ordinary differential

equations in time. One of several fixed-step or variable-step numerical integration schemes is used,

including the Runge-Kutta, modified stiff-gear, Adams-Bashforth predictor/Adams-Moulton correcter,

and Euler methods. The variable-step Adams-Bashfortl_Adams-Moulton method was used for all

COLD-SAT dynamic model simulations, for it yielded excellent stability and accuracy while

consuming the least CPU time.

(3) "Standard component" libraries are available that contain a rich assortment of common control

system elements, including basic first- and second-order transfer functions, nonlinear effects, basic

control laws, and tabular function generators. Furthermore, user-specified Fortran and Macro

components can be created to model additional effects by inclusion of the appropriate Fortran code.

"Fortran components" were used to model the vast majority of COLD-SAT dynamic model

subsystems.

(4) Linear control system analysis and design tools, such as root locus, frequency response, and

linear-model generation, can be performed on both linear and nonlinear models. (Nonlinear models

are automatically linearizod about a given operating point.)

(5) High-resolution graphical display and hard copy of analysis may be output.

(6) Model code can call external subroutines. This approach, which permits modular program

development, was extensively employed for the COLD-SAT dynamic model.

All of these capabilities are integrated into a single package thin runs on a variety of platforms,

including the Apollo Domain workstations, the VAX/VMS minicomputer, and the Cray X/MP

supercomputer. Figure D.I is a pictorial overview of the EASY5 system. For additional information,
see reference 8.

D.2 Subroutines

The COLD-SAT dynamic model utilizes several external subroutines and functions. Some were

developed specifically for this model, but others are general-purpose routines.
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D.2.1 COLD-SAT Model-Specific Subroutines

SCATT (ATI'UD) computes desired spacecraft attitude direction-cosine matrix for given attitude

option, axis alignment, optional rotation, and time (section 2.6). ATTUD is

called by SCATT.

S_S_ computes equivalent mechanical slosh-model parameters for liquid hydrogen,

by using an SMD slosh model, from tank dimensions, fill level, and local

acceleration (section 4.1)

TTLACC computes microgravity acceleration for given point in the spacecraft

(section 5.0)

IRCSTGL function that returns nonzero value when any RCS thruster is fired. This

value is used in the microgravity acceleration plotting routine (section 5.4).

D.2.2 General Astronomical Routines

ATMJ (FUNC I,

FUNC, and SIMPK)
function that returns atmospheric density at given point in spacecraft orbit by

using Jacchia's 1970 model (ref. 2). FUNCI, FUNC, and SIMPK are called

by ATMJ.

JDATE computes Julian date with respect to year 2000 from given month, day, year,
and Greenwich mean time

ORBEL computes classical elliptized orbital elements from position and velocity
VectOrs

SGHA computes Greenwich hour angle for given date and GMT

SPHGGT computes gravity-gradient torque by using spherical Earth model
(section 3.2.1.1)

STVEC2 computes position and velocity vectors from given orbital elements
(section 2.2)

SUNVEC computes position of Sun in TOD coordinates on given Julian date, as well

as vector normal to ecliptic (section 2.6.2)

SUNVIS determines fraction of Sun's disk that is visible for given point in spacecraft
orbit (section 3.2.1.4)

D.2.3 General Vector, Matrix, and Other Mathematical Routines

AROT computes matrix that performs Euler rotation of angle 0 about given axis

MPROD1 computes product of 3 x 3 matrix and a three-element vector: v'2 = Av'l
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MPROD2

MTMPY1

MTMPY2

MTMPY3

SP2REC

VCRS

VDOT

VTSCAL

XUNIT

HYPOT

computes product of transpose of 3 x 3 matrix and a three-element vector:.

=

computes product of two matrices:

computes product of two matrices:

computes product of two matrices:

Cn_p = An_raBm_p

Cn,,p = An,,m(Bp,,m )T

Cn_ p = (Am,n)TBm_ p

converts vector in spherical coordinates to Cartesian coordinates, provided

that _ component (longitudinal component) of vector is zero

computes crossproduct of two vectors in three dimensions: _ = V x £

computes dot product of two vectors: x = ¢ • £

computes product of vector and scalar:. _ = ax7

computes magnitude of given vector, as well as unit vector in same direction

as given vector

computes hypotenuse of right triangle: z = x_ + y 2

D.2.4 Quaternion Routines

DCMTOQ converts direction-cosine (attitude) matrix into equivalent attitude quaternion
(section 2.6.8)

Q2RPY extracts rotation angles about spacecraft x, y, and z axes from quatemion

specifying rotation from some reference attitude (sections 3.5 and 4.2.1)

QCVQ converts vector from coordinate system A to coordinate system B by using
quatemion (appendix B, section B.3.7)

QvQc converts vector from coordinate system B to coordinate system A by using

quatemion (appendix B, section B.3.7)

QMULT2 computes product of two quaternions: /_ = q'l *q'2c (appendix B,

section B.3.3)

QMULT3 computes product of two quaternions: /_ = ql c *q'2 (appendix B,

section B.3.3)
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D.3 Code Listing

D.3.1 EASY5 Model

The COLD-SAT dynamic model was developed and debugged on an Apollo workstation by using

the EASY5/W program. EASY5/W is a graphical preprocessor to EASY5 that allows the user to

create and connect both standard and user-defined components in a manner similar to a computer-
assisted design (CAD) system. Once a valid model is created in EASY5/W, a batch-format EASY5

model-generation source file is created from the graphical model. This file can be compiled and run

on the Apollo or ported to another machine (with the proper connectivity), such as the Cray, for faster

execution. The output files can then be sent back to the Apollo or to a personal computer for
graphical postprocessing (see figure D. 1).

Figure D.2 is the EASY5/W Apollo workstation block diagram of the entire model.

D.3.2 Subroutines

In order to modularize the code as much as possible, much of the code used to implement the
model was written in the form of standard Fortran 77 subroutines external to EASY5. These

subroutines are called by the main model.

Graphical

biock-dlagram-
format model

source

MA1

Workstation version only

User-defined
external Fortran

subroutines

EASY5 standard-___.._/

component

,brides I SystemFortrancompller

1 Fortran-77 code
(subroutine EQMO)

I (csdm.f)

I Batch-mode l

J EASY5/W _L_ model-generetlon |EASY5 model-source code
i program ---*P1 generati°n(csdm.mod) |program

NI platforms

System

Model object linker

code(csdm.o)
Model executable

(csdm.exe)

-JZprogram

Translont simulation I iunear analysis
(differential ](frequency response,

equation solver) [root locus, etc.)

Text-format output (csdm.spl)
and plot data (csdm.rlxI)

Time

Time

Figure 0.1 .--EASY5 modeling system.
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Appendix E
Acronyms and Abbreviations

A

AU

ACS

CG

CPU

COLD-SAT

GHA

GMT

H

lbf

Ibm

MID

m

N

N2H4

P-I

psia

RCS

RMSD

S/C

slug

SCO

ampere (a unit of electric current)

astronomical unit

attitude control system

center of gravity of spacecraft

central processing unit

Cryogenic On-orbit Liquid Depot--Storage, Acquisition, and Transfer

unit of acceleration (32.16x 10-6 ft/sec 2)

Greenwich hour angle

Greenwich mean time

henry (a unit of inductance)

pound force

pound mass

maximum instantaneous deviation

meter (a unit of length)

newton (a unit of force)

hydrazine

proportional-integral (control law)

pounds per square inch absolute

reaction control system

root-mean-square deviation

spacecraft (also refers to primary (x,y,z) spacecraft coordinate system)

32.175 Ibm

spacecraft orbit system
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SMD

TOD

TOL

V

spring-mass-dashpot (slosh) model

true-of-date coordinate system

tolerance

volt (a unit of electric potential)
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